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Preface

Any intelligent fool can make things bigger and more complex. It takes a touch of
genius — and a lot of courage to move in the opposite direction.

Albert Einstein

“Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and
Machine Learning Techniques,” Second Edition is a sequel to “The Science of Algorithmic
Trading & Portfolio Management.” This book greatly expands the concepts, foundations,
methodology, and models from the first edition, and it provides new insight into Algorithmic
Trading and Transaction Cost Analysis (TCA) using advanced mathematical techniques,
statistics, optimization, machine learning, neural networks, and predictive analytics.

Algorithmic Trading Methods provides traders, portfolio managers, analysts, students,
practitioners, and financial executives with an overview of the electronic trading environment,
and insight into how algorithms can be utilized to improve execution quality, fund
performance, and portfolio construction.

We provide a discussion of the current state of the market and advanced modeling techniques
for trading algorithms, stock selection and portfolio construction.

This reference book will provide readers with:

� Insight into the new electronic trading environment.
� Overview of transaction cost analysis (TCA) and discussion of proper metrics for cost mea-

surement and performance evaluation.
� Description of the different types of trading algorithms: VWAP/TWAP, Arrival Price,

Implementation Shortfall, Liquidity Seeking, Dark Pols, Dynamic Pricing, Opportunistic,
and Portfolio Trading Algorithms.

� Proven market impact modeling and forecasting techniques.
� Trading costs across various asset classes: equities, futures, fixed income, foreign exchange,

and commodities.
� Advanced forecasting techniques to estimate daily liquidity, monthly volumes, and ADV.
� An algorithmic decision-making framework to ensure consistency between investment and

trading objectives.
� An understanding of how machine learning techniques can be applied to algorithmic trading

and portfolio management.
� A best execution process to ensure funds are positioned to achieve their maximum level of

performance.
� A TCA library that allows investors to perform transaction cost analysis and develop algo-

rithmic trading models on their own desktop.
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� A methodology to decode broker models and develop customized market impact models
based on the investment objective of the fund.

Readers will subsequently be prepared to:

� Develop real-time trading algorithms customized to specific institutional needs.
� Design systems to manage algorithmic risk and dark pool uncertainty.
� Evaluatemarket impact models and assess performance across algorithms, traders, and brokers.
� Implement electronic trading systems.
� Incorporate transaction cost directly into the stock selection process and portfolio optimizers.

For the first time, portfolio managers are not forgotten and will be provided with proven
techniques to better construct portfolios through:

� Stock Selection
� Portfolio Optimization
� Asset Allocation
� MI Factor Scores
� Multi-Asset Investing
� Factor Exposure Investing

The book is categorized in three parts. Part I focuses on the current electronic market
environment where we discuss trading algorithms, market microstructure research, and
transaction cost analysis. Part II focuses on the necessary mathematical models that are used
to construct, calibrate, and test market impact models, as well as to develop single stock and
portfolio trading algorithms. The section further discusses volatility and factor models, as
well as advanced algorithmic forecasting techniques. This includes probability and statistics,
linear regression, probability models, non-linear regression, optimization, machine learning
and neural networks. Part III focuses on portfolio management techniques and TCA, and
shows how market impact can be incorporated into the investment decisions stock selection
and portfolio construction to improve portfolio performance. We introduce readers to an
advanced portfolio optimization process that incorporates market impact and transaction
costs directly into the portfolio optimization. We provide insight in how MI Factor Scores
can be used to improve stock selection, as well as a technique that can be used by portfolio
managers to decipher broker dealer black box models.

The book concludes with an overview of the KRG TCA library. This chapter providers readers
with insight into how the models and methodologies presented in the book can be packaged and
utilized within numerous software packages and programming languages. These include:
MATLAB, Excel Add-Ins, Python, Java, C/Cþþ, .NET, and standalone applications as
.EXE and .COM application files.

And like the Albert Einstein quote above asks, Algorithmic Trading Methods dares to be
different and exhibits the courage to move in new direction. This book presents the
simplicity behind the algorithmic trading curtain, and shows that the algorithmic trading
landscape is not nearly as complex as Einstein’s intelligent industry fools would have us
believe. This book is a must read for all financial investors and students.
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Chapter1
Introduction

To say that electronic algorithmic trading has disrupted the financial envi-
ronment is truly an understatement. Algorithmic trading has transformed
the financial marketsdfrom the antiquated days of manual labor, human
interaction, pushing, yelling, shoving, paper confirmations, and the occa-
sional fist-fightdinto a system with electronic audit trails and trading facil-
itated using computers, complex mathematical formulas, machine learning,
and artificial intelligence.

Nowadays, the trading floors of these antiquated exchanges more resemble
a university library than they do a global center of trade and commerce.
Many of the glamourous trading floors of years ago, such as the floor of
the New York Stock Exchange, have been relegated to just another stop
on a historical walking tour of downtown New York City.

Trading floors are no longer an active center of trading commerce. Trading
floors are relatively quiet and are no longer littered with filled will paper or-
ders and confirmations. Today, all trading occurs electronically in data cen-
ters with computers rather than people matching orders.

In 2019, electronic trading comprised approximately 99.9% of all equity
volume and algorithmic trading comprised approximately 92% of all equity
volume.1 The remaining 8% of the orders that are not executed via an algo-
rithm are still transacted electronically. But in these situations, brokers still
route orders via a computer trading system to different exchanges, venues,
and/or dark pool to be transacted in accordance with specified pricing rules
define by these brokers.

Fig. 1.1 illustrates the evolution of electronic and algorithmic trading over
the period 2000e19. Electronic trading in the early years was dominated
by firms such as Instinet, Island, and ITG/Posit, and occurred mostly in
NASDAQ/OTC stocks. Electronic trading grew from 15% in 2000 to
99.9% in 2019. The only trading that does not occur electronically today

1Source: Kissell Research Group, www.KissellResearch.com.
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(<0.1%) occurs through special situation sales and transactions. Otherwise,
all trading in US markets occurs electronically.

Over the same period, algorithmic trading exploded grew from 1% of total
market volume in 2000 to 93% in 2019. The biggest increase in algorithmic
trading occurred first in August 2007 due to the quant meltdown and then
again in 2008e09 due to the financial crisis. It was during these periods of
high volatility, trading difficulty, and rapid price changes that institutions
realized the benefits of algorithmic trading. During these times, investors
were faced with rapidly adverse price movement and decreased transactable
liquidity. Time delay encountered in when disseminating orders to brokers
for immediate execution were often met with information leakage, less
favorable transaction prices, and lower profits margins. To avoid these hos-
tile trading conditions, investors turned to the more advanced trading sys-
tems and the usage of algorithms so that they could better control their
orders, keep their trading intentions hidden, and achieve more favorable
transaction prices.

The old-fashioned trading system environment we once know where we call
our broker, market-maker, or specialist over the phone are long gone.
Welcome to the new financial environment.

WHAT IS ELECTRONIC TRADING?
Electronic Trading is the process of transacting orders over a computer sys-
tem or network rather than via a phone call or fax sent to your broker where
you need to state your order, trading intentions, and any special instruction.
Electronic trading could be as simple as entering a buy order into a retail
trading system using a computer terminal, or more recently, via a mobile
app. Electronic trading could also be more advanced and complex such
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n FIGURE 1.1 Electronic and Algorithmic Trading. Source: Kissell Research Group.
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as situations where investors route orders to different trading venues for
execution at specified prices, within price spreads, or for execution at
different times of the day. In all these cases, electronic trading encompasses
any order that generates via a computer connection.

Electronic trading should not be anything new. In fact, much of our daily lives
have become mobile and we are connected to the internet almost twenty-four
seven. Think of all the purchases we make on the internet including every-
thing from movie, sports, theater, and entertainment tickets; clothing, travel,
hotel, and airfare, automobile, and at times even home purchases.

WHAT IS ALGORITHMIC TRADING?
Algorithmic trading in its simplest form is the computerized execution of a
financial instrument following a prespecified set of trading rules and instruc-
tions. Investors, instead of sending an order to a broker for execution or
routing an order to an exchange, simply enter the order into the algorithm
for execution. Algorithms then slice larger orders into smaller pieces for
execution over the day, and at various trading venues, to achieve the best
market prices and reduce overall trading costs.

The primary goal of algorithmic trading is to ensure that the implementation
of the investment decision is be consistent with the investment objective of
the fund and to manage the overall transaction costs of the order and
achieve the favorable prices.

TRADING ALGORITHM CLASSIFICATIONS
Trading algorithms are classified into three categories: execution algo-
rithms, profit seeking algorithms, and high frequency trading algorithms.

n Execution Algorithms: An execution algorithm is tasked to transact the
investment decision made by the investor or portfolio manager. The man-
ager determines what to buy or sell based on their investment style and
fund investment objective, and then enters the order into the algorithm.
The algorithm will then execute the order and implement the decision
following a set of rules specified by the portfolio manager.

n Profit Seeking Algorithms: A profit seeking algorithm is an algorithm
that will both determine what to buy and/or sell in the market and will
execute those decisions without interaction by the portfolio manager.
For example, these algorithms will use real-time price information and
market data such as prices, volume, volatility, and price spreads to deter-
mine what to buy or sell, and will then implement a trade when the con-
ditions are favorable to the investor. Profit seeking algorithms seek to
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earn a profit based on a quantitative model, market mispricing, or a stat-
arb strategy based on pairs, index funds, or ETFs.

n High Frequency Trading: High frequency trading (HFT) is a type of
profit-seeking algorithm that seeks to earn a short-term trading profit.
The holding period for an HFT trader will often only last for a few seconds
or less and HFT trading will tend not hold any overnight position as it ex-
poses the fund to much increment risk. HFT algorithms are characterized by
very high turnover rates and they seek to profit by exploiting market mis-
pricing and liquidity conditions across different exchange, venues, and
dark pools. HFT algorithms are also notorious for trying to uncover the
buying and/or selling intentions of long-term investor through processing
market data, prices, and quotes, and then using this information to their
advantage to achieve a profit. All HFT algorithms are profit seeking algo-
rithms, but not all profit seeking algorithms are HFT.

TRADING ALGORITHM STYLES
There are many different types of trading algorithms in the market, each
with a unique name that often does not adequately describe how the algo-
rithm will transact in the marketplace. To help managers differentiate algo-
rithms, they are often classified as aggressive, working order, or passive.
Managers need to determine the algorithm that will transact in a manner
consistent with the investment object of the fund. These are:

n Aggressive: Algorithms that will trade aggressively in the market
with the goal of transacting shares at a specified price or better. These
algorithms have often been described as liquidity seeking algorithms
and/or liquidity sweeping algorithms. These algorithms will likely trade
aggressively in the market and take liquidity across multiple venues
when there is volume at the specified price or better. They tend to trade
with more market order than limit orders.

n Working Order: Algorithms that trade in the market following prescribed
rules based on the needs of investors. These algorithms will often seek to
balance the tradeoff between trading cost and market risk, as well as seek
to maximize the specified investment objectives. These algorithms will
trade with an appropriate balance and mix of limit and market orders.

n Passive: Algorithms that trade in a very passive manner and using mostly
limit orders. These algorithms will also seek to trade greater quantities of
shares in dark pools to minimize information leakage and to ensure that
the execution of the order does not provide the market with signals per-
taining to the trading intentions of the fund.
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INVESTMENT CYCLE
The most important part of a trading algorithm is to ensure the algorithm
executes the order consistent with the investment objective of the fund.
Therefore, to fully understand and appreciate how to create, develop, and
utilize trading algorithms we must start at the beginning with a discussing
of the investment cycle, and more importantly, a discussion of how and why
portfolio managers trade.

The investment cycle consists of four distinct phases: asset allocation, port-
folio construction, implementation, and portfolio attribution.

n Asset allocation consists primarily of distributing investment dollars
across stocks, bonds, cash, and other investment vehicles to achieve a
target level of return within a specified level of risk exposure and
tolerance.

n Portfolio construction consists primarily of selecting the actual instru-
ments to hold in each asset class.

n Implementation has historically consisted of selecting an appropriate
broker-dealer, type of execution (e.g., agency transaction or principal
bid), and now includes specification algorithms and algorithmic trading
rules.

n Portfolio attribution is the process where fund managers evaluate port-
folio returns to determine if returns are due to the investment strategy
or market noise and volatility. Managers seek to determine if returns
are due to skilled decision-making ability or luck.

Until recently, the vast majority of research (academic & practitioner) has
focused on improved investment decisions. Investors have a large array
of investment models to assist in asset allocation and portfolio construction.
Unfortunately, investors do not have nearly the same quantity of trading
tools to analyze implementation decisions. The quality of trading tools
has changed significantly with the rise of portfolio-trading tools and transi-
tion management. With the advent of algorithmic trading these tools are be-
ing developed further and gaining greater traction (Fig. 1.2).

INVESTMENT OBJECTIVE
Portfolio managers all have different reasons for trading. They each have
different investment objectives, time horizons, risk constraints, and mix
of investors. When a manager decides to make a trade, they need to safe-
guard and protect their investors from adverse price movement that may
occur during the execution of the trade. Managers need to ensure that trades
are not executed too fast resulting in too much price impact from their
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buying and/or selling pressure or executed too slow resulting in too much
market risk from taking too long to complete the order.

The goal of the fund manager during implementation of the investment de-
cision is to ensure that the execution strategy used to transact the order is
consistent with the investment objective of the fund. To accomplish this
goal, traders need to properly balance the tradeoff between price impact
and market risk, and they must do so by considering the reasons behind
the managers trading decision.

INFORMATION CONTENT
A trade is either “information-based” or “liquidity-based.” An information-
based trade is a trading decision that is motivated by expected future price
movement and/or company growth prospects, or to achieve desired risk-
return targets. For example, transacting stocks that are undervalued or over-
valued in the market and/or purchasing stocks that have been found to have
superior long-term growth prospects are considered information-based
trades and provides managers with opportunity to achieve alpha. Managers
executing an information-based trade will take necessary steps to keep their
trading intentions hidden from the rest of the market so that they can
achieve the maximum alpha potential. An information-based trade may
be executed in an aggressive manner that allows the manager to purchase
shares at the undervalued price or sell shares at the overvalued price before
the rest of the market learns of the mispricing.

n FIGURE 1.2 Investment Cycle.
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A liquidity-based trade is trade that is not motivated by any expected future
price trend and/or company growth prospects, or the need to achieve a
desired risk-return tradeoff. These trades are often due to a cash deposit
or a cash redemption request from an investor, a cash dividend received
by the fund that needs to be reinvested in the market, or the need for the
manager to sell assets to pay expenses or taxes. A liquidity-based trade
may occur if there is a scheduled index reconstitution such as a quarterly
or annual rebalance. In these situations, index managers buy stocks that
are being added to the index and sell stocks that are being deleted from
the index so that they can hold the same stocks and in the same weightings
as the underlying index. A liquidity-based trade will often be executed in a
passive manner if the manager does not have reason to suspect there will be
any adverse short-term price trends.

INVESTMENT STYLES
Portfolio managers trade for different reasons. Managers will buy stocks
that are found to be undervalued and likely to increase in price and will
sell or short stocks that are found to be overvalued and likely to decrease
in price. Portfolio managers may trade when they have uncovered a stock
that has superior long-term growth prospects that will help the fund generate
incremental alpha. Other times, portfolio managers will trade to rebalance
their portfolio to maintain their designated asset allocation mix or to ensure
they meet targeted risk-return objectives.

An industry event such as a merger, acquisition, or bankruptcy will result in
a trade if the stock is held in the fund’s portfolio. And an index reconstitu-
tion will trigger a trade for an index fund because the fund needs to hold the
same stocks and in the same proportions as in the underlying index. Man-
agers need to sell stocks that are being deleted from the index and buy
stocks that are being added to the index regardless of their long-term
view or price expectations for the company.

Fund managers will also purchase shares when investors deposit cash into the
fund and will sell assets when shareholders request a cash redemption, also
known as a liquidation. Additionally, managers will trade when they receive
cash dividends from their holdings that need to be reinvested in the market or
when they need to raise cash to pay for portfolio expenses to pay taxes.

The investment style of the fund will also influence the way trades are
executed in the market, and will be different for active funds, quantitative
fund, and passive funds.
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The reasons behind trades are important considerations when developing
the execution strategy for the order. These are further discussed below.

Active Fund. An active fund manager makes investment decisions at the
stock level. They utilize publicly available company information such as bal-
ance sheets and income statements, sales, earnings, and dividends. They may
also evaluate the company management team and overall firm strategy and
business plan. Active managers rely in part on their own personal expertise
and judgment, and will perform a qualitative analysis of a company when
appropriate, rather than solely relying on statistical methods. Active man-
agers spend large amounts of time and resources evaluating companies to
uncover superior investment opportunities and potential for long-term out-
performance. As such, they research which companies are likely to outper-
form their peers and should be added to the portfolio and which companies
are likely to underperform their peers and should be removed from their port-
folio or possibly sold short. Most of the active manager trades are
information-based.

An active manager will execute trades in different manners depending on
the reason of the investment decision. An active manager who has uncov-
ered a stock that is mispriced in the market will likely execute the order
more aggressively to complete the order before other market participants
learn of the mispricing. An information-based trade for a stock with supe-
rior long-term growth prospects that is currently trading at a fair market
price may be transacted more passively so it does not alert the market to
the long-term growth prospects of the company. An active manager may
also make a liquidity-based trade, such as in a situation where the manager
receives a cash investment and decides to allocate the dollars across all
stocks in the portfolio because they believe this is the best portfolio mix
for their investors.

Quantitative Fund. Quantitative fund managers utilize a systematic
approach to investing based on mathematical models, statistical analysis,
and sound financial theory, rather than relying on human judgment. Quanti-
tative managers utilize market data including prices, momentum, volume,
volatility, and correlations, as well as information derived from company
balance sheets and income statements as inputs into their models. Quantita-
tive managers spend a great amount of time generating ideas, building
models, and testing results. The quant manager will often back-test ideas
over a historically long period of time such as 30 years or more to ensure
statistical accuracy and a high degree of confidence that the strategy will
work under different market conditions.
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Quantitative managers have clearly defined investment objectives, such as
to achieve outperformance compared to a benchmark, manage risk-return
tradeoff, statistical arbitrate based on market mispricing, minimize tracking
error, etc. The trade for the quant funds is determined from their models and
the execution of these trades are determined from the specific reason of the
trade decision. For example, a quant manager buying stocks that are likely
to outperform in the short-term may trade in an aggressive manner. A quant
manager who is rebalancing their portfolio to minimize tracking error and is
buying and selling stocks may trade in a more passive manner because their
trade list is providing some hedging protection against intraday price move-
ment and it is not motivated by any short-term alpha. And a quant manager
who is targeting a specified risk-return tradeoff may trade in a manner
somewhere between passive and aggressive to balance their price impact
and risk exposure.

Passive Fund. A passive manager, also known as an index manager, makes
trade decisions based on their underlying portfolio benchmark. Index funds
have historically been referred to as liquidity-based and information-less
investing because the investment decision and subsequent trades are deter-
mined from the benchmark index and not from manager’s valuation of the
company or their long-term grow expectations. Passive managers invest in
stocks based on their weightings in the index and will rebalance their port-
folio when there are changes made to the index or due to asset allocation
needs. At times, an index manager may seek to overweight or underweight
a stock in their portfolio to generate excess alpha, but this is the exception
rather than the normal practice.

Index manager trades are mostly liquidity-based trades. Index manager will
trade if there is a change to the underlying index resulting in stocks being
added to the index or deleted from the index or if trades are directed by in-
vestors such as from a cash investment or cash redemption request. In these
situations, trades are allocated across all stocks in the portfolio based on their
weights in the underlying index. An index manager will most often transact
in a passive manner. However, may elect to transact in an aggressive manner
at times of an index change to avoid potential future adverse price move-
ments that will likely arise from the large amount of buying or selling pres-
sure from other index managers buying and selling the same stocks.

INVESTMENT STRATEGIES
Alpha Generating Strategy. An alpha generating strategy consists of a
strategy where the fund manager expects to earn a return for the risk
they incur. In many situations, portfolio managers also expect to earn an
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excess return from the information content of the trade that they uncovered.
For example, managers will buy stocks that are found to be undervalued
and likely to increase in price and will sell or short stocks that are found
to be overvalued and likely to decrease in price. Portfolio managers may
also trade when they have uncovered a stock that has superior long-term
growth prospects that will help the fund generate incremental alpha.

Common alpha generating strategies are based on the following:

n Long-Term. Long-term alpha refers to a strategy where the manager be-
lieves that the company has excellent and/or superior long-term growth
potential and is likely to achieve excess returns over time.

n Short-Term. Short-term alpha refers to a strategy where the manager be-
lieves the asset will change price in the near-term. A short-term alpha
trade can be triggered from a market mispricing where the manager be-
lieves the stock is either overvalued or undervalued expects the rest of
the market to uncover this mispricing in the near-term resulting in a
reevaluation of stock price.

n Company Outlook. A manager will make a trade when their expectation
about a company has changed. This could be due to the proprietary
research performed by the fund manager and analysts, or it could be
due to company news and announcements. In either case, this new infor-
mation may lead the manager to reevaluate their expectation for future
price returns and company growth potential.

n Company News. A manager will often change their outlook on a com-
pany at times of a company announcement such as higher or lower rev-
enue expectations, or a public announcement of a new product line or
revenue forecast expectations.

n Corporate Action. A corporate action is any company event or news
announcement that has a financial impact on the company. Corporate ac-
tions include dividends and coupon payments, mergers and acquisitions,
spin-offs and de-mergers, stock splits, conversion of convertible bonds,
early redemption, announced class action lawsuit, bankruptcies, etc. A
portfolio manager will trade after a corporate action announcement
when they believe that they have better understanding of the event
than the rest of the market. Corporate action strategies include risk arbi-
trage and event driven strategies.

n Mispricing. A manager may make a trade if they believe there is mispric-
ing between stocks or between stocks and an underlying index. For
example, in a pairs trade, a portfolio manager will make a trade when
the price difference between the two stocks exceeds a certain value.
Once the price spread decreases the manager will close their positions
to earn a profit. Another example of a market mispricing trade is an index
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arbitrage trade. In these situations, fund managers seek to earn a profit by
simultaneously transacting a stock index future and the underlying
stocks in the index when there is a difference between the cash index
value and the fair value of the index.

Alpha generating trades will be executed more aggressively if the fund man-
ager believes that they have uncovered information that is likely to be real-
ized by the rest of the market in the near-term so that they can complete
their order at the more favorable prices. Alpha generating trades based on
long-term alpha expectations and long-term growth prospects may be
executed more passively. In this case, the portfolio manager attempts to
keep their trading intentions and growth prospects hidden from the rest of
the marketplace.

Portfolio Rebalance. A portfolio rebalance is another motivating factor
behind a trade. Portfolio Managers continuously evaluate their holdings to
make certain that the portfolio is positioned to meet shareholder expectations
and obligations. Portfolio managers will rebalance their portfolio when the
current portfolio is no longer consistent with the specified portfolio objec-
tives due to many reasons such as changing market conditions, volatility
and correlations, price targets, and when managers expectations have
changed. Portfolio managers will also rebalance their portfolio to maintain
their designated asset allocation mix or to ensure they meet targeted risk-
return objectives. Portfolio rebalances will often include trades that comprise
multiple stocks and are referred to as a basket, program, portfolio, or trade
list.

The following reasons may cause a portfolio manager to rebalance their
portfolio.

n Asset Allocation. A portfolio manager will rebalance their portfolio when
the dollar weight in an asset or in an asset class becomes either too large or
too small. For example, consider a fund that specifies it will maintain a
mix of 60% equities and 40% bonds. If there is an increase in equity prices
market resulting in a dollar weighting of 70% equity and 30% bonds the
manager will need to rebalance the portfolio by selling stocks and buying
bonds to bring the portfolio back in line. Additionally, a manager may
rebalance the portfolio if the value of an individual asset become too large
in comparison to the other portfolio holdings. For example, if a stock
experience an increase in price it may become overweighted in the portfo-
lio and thus have a very large concentration of individual risk. In this case,
PMs will rebalance the portfolio to reduce the dollar weight in these stocks
and reduce the risk exposure.
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n Index Reconstitution. An index manager will rebalance their portfolio
when there is a change to the underlying benchmark index. Index pro-
viders make changes to the underlying index throughout the year and
in doing so cause index managers to rebalance their holdings so that their
portfolio continuously replicates the underlying benchmark index. Index
providers add and delete stocks throughout the year due to due to
mergers and acquisitions, and due to bankruptcies and de-listings. Index
providers many also make changes to an underlying index due to an
annual reconstitution.

n Market Outlook. A portfolio manager will rebalance their portfolio if
their market outlook has changed. For example, if the portfolio manager
believes small cap stocks are going to outperform large cap stocks they
may shift investment dollars from the large cap to small cap stocks. If the
manager expects grow stocks to outperform value stocks or vice versa,
then the manager will rebalance their portfolio so that their holdings
are better reflect future returns expectations.

n Market Neutral. A market neutral strategy is a strategy where the fund is
simultaneously long and short positions. With a market neutral strategy,
managers may not have any expectation regarding market movement, but
they believe that the long positions will outperform the short positions,
even in times of a declining market. In these situations, managers will
seek to minimize the risk of the position and transact buys and sells together
so that the proceeds from sells can be used to purchase the buys.

n Flight to Quality. Flight to quality refers to times when portfolio man-
agers believe that the is an extremely high quantity of risk and uncer-
tainty in the market such as during the financial crisis of 2008e09. In
these situations, managers will sell their risky assets and invest in safe
haven assets such as government treasury bonds.

n Model Driven. A quantitative manager will elect to rebalance their port-
folio when they have uncovered a difference between their underlying
portfolio and their investment objectives. These reasons could be due
to changes in the risk characteristics of the stocks in the portfolio, change
in correlation structure across stocks, and/or changing expected returns.
Some of the more common model-driven objectives include targeted
returns, risk-return tradeoff, tracking error, and risk exposure to a spec-
ified factor such as interest rates, inflation, bond yields, and/or commod-
ity prices such as oil, gas, and gold.

A portfolio manager who is rebalancing their portfolio will consider the
reason behind the rebalance when structuring the execution strategy and
the overall risk of the trade list. An information-based rebalance may be
traded more aggressively if the manager is trading off a mispricing and
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may be traded more passively if the rebalance is due to an index rebalance.
A model-driven rebalance will tend to be executed in a manner to ensure
consistency between the investment objective and price impact and risk
of the trade. The manager will consider the overall risk of the trade list
when developing the execution strategy. These trades can be either aggres-
sive, passive, or somewhere in between. Trade lists that comprise greater
risk will tend to be traded more aggressively while trade lists that comprise
less risk will tend to be traded more passively.

Risk Management. Portfolio managers will also trade for risk management
needs and to protect the fund from potentially incurring large losses due to
adverse market conditions and price movement.

n Risk Reduction. In a situation of increasing market volatility, a portfolio
manager may elect to reduce portfolio risk by selling high volatility
stocks and buying stocks with lower volatility. They may also decide
to reduce risk by adding uncorrelated stocks to the portfolio to diversify
portfolio risk.

n Hedging. A portfolio manager may elect to hedge the portfolio to pro-
tect investors from potential losses due to potential adverse price move-
ment. Portfolio hedging may also occur at the end of the year if a
manager needs to lock in profits but does not want to sell the securities.

n Liquidation Costs. Portfolio managers continuously evaluate the liquida-
tion cost of their holdings to determine how much it will cost if they need
to liquidate the entire position. If a holding becomes too expensive to
liquidate, the manager will reduce the holding size to ensure that liquida-
tions costs are within a specified value. Managers may also perform
what-if analysis to determine the appropriate holding size given extreme
market conditions.

A risk management trade will be executed in the market in a manner to
ensure consistency between the overall investment risk and the timing
risk of the trade.

Cashflow. Portfolio managers will also trade due to cash flow needs. These
are:

n Cash Deposit. Throughout the year, shareholders and new investors will
make cash deposits into the fund. Portfolio managers will need to invest
these proceedings into their selected asset.

n Redemption. Investors will request cash redemptions and withdrawals
from the portfolio. Managers will need to sell assets to raise the capital
to return to the investors.
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n Cash Dividend. Funds receive cash dividends from their investments
throughout the year. Managers will need to reinvest these dollars back
into the portfolio by buying stocks.

n Liabilities. Portfolio managers need to ensure that future portfolio returns
will be able to meet the liabilities of the fund. For example, pension plans
need to make future liability payments and it is the responsibility of the
fund manager to ensure that the portfolio is positioned to meet these ob-
ligations. Portfolio managers need to rebalance their portfolios to ensure
that they will be able to meet their future liabilities.

n Payments. Managers need to pay for portfolio management expenses and
will need to sell securities to raise cash to cover these expenses.

A cashflow trade will often be executed in a more passive manner since
cashflow trades are more due to liquidity trading than they are
information-based. If these trades are information based, however, man-
agers will seek to execute these trades in a more aggressive manner.

Economic Outlook. Portfolio managers will also rebalance their portfolio
when their economic outlook has changed. These changes consist of tax
rates and changes in the overall economy such as short-term and long-
term interest rates and inflation, unemployment, as well as other types of
economic indicators such as energy prices. Depending on the indicator,
each of these will have a different effect on stocks in the portfolio and
will cause the portfolio manager to revisit the expected return of each of
risk level. Some of these strategies include:

n Yield Curve Strategy. A fixed income manager will invest in different
bonds based on interest rates and maturity. As interest rates change man-
agers will need reevaluate their credit strategy and likely make changes
to their bond holdings.

n Credit Strategy. A credit strategy is intended to maximum return for a
specified level of risk or to outperform a specified index. Managers
employing a credit strategy will employ either a bottom up or top
down credit strategy approach. In a bottom up credit strategy approach
the manager is concerned with the credit risk and credit ratings of the
company and whether the bond is an investment grade or high yield.
Credit strategy risk includes credit spread risk default risk, and liquidity
risk. In a top down approach, managers rely on their macro view of the
economy and invest in groups of different types of bonds such as sector,
industry, or country.
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Any change regarding the outlook of a company, economic conditions, or
interest rates that will affect bond returns will cause the portfolio manager
to rebalance their credit portfolios.

RESEARCH DATA
The underlying data used by portfolio managers as part of their investment
analysis come from different sources. These research data are comprised of
equity analysts, quantitative analysts, index analysts, and transaction cost
research analysts. Each of these provide managers with important insight
into the investment decision and stock selection process, and it also pro-
vides valuable information on how to best execute the trade. These research
areas are:

n Equity Research: Equity analysts provide company specific research us-
ing data from balance sheets and income statements, forecasted sales and
earnings, long-term growth potential, and future price targets. Equity an-
alysts rely on company fundamental data and expectations surrounding
the economy. Equity analysts provide managers with insight into
whether a stock is over- or undervalued, and information about its
long-term growth potential.

n Quantitative Research: Quantitative analysts provide risk and return es-
timates that are generated from models, as well as insight into which
groups of stocks are likely to outperform and/or underperform going for-
ward based on quantitative factor models. Managers focused on trading
baskets and portfolios will benefit from the research products of quant
teams.

n Index Research: Index research provides managers with insight into the
expected buying and/or selling pressure in a stock due to an index reba-
lance. For example, if stock ABC is being added to an index, and stock
XYZ is being deleted, the index research teams will provide expected
buying demand for ABC and selling pressure for XYZ, and respective
price impact estimates. The index research team may also provide man-
agers with insight into the likely candidates to be added to and deleted
from the index for forthcoming index reconstitutions or due to an
announced and potential merger.

n Transaction Cost Analysis (TCA): Transaction cost analysis research
provides portfolio managers with insight into the how much it will
cost to buy or sell shares. This information will help the portfolio man-
ager fine-tune their investment decision and determine the most appro-
priate order size and share quantity given price impact and expected
alpha. The information also serves as the basis for selecting the proper
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trading algorithms and corresponding parameters to execute a trade.
TCA will also provide managers with optimal time horizons to execute
the order based on their investment needs.

BROKER TRADING DESKS
The equity trading operations at a broker-dealer is primarily broken into
three trading desks: cash, program, and electronic. Investors utilize these
desks in different manners and for many different reasons, an overview
of the primary functions is provided below:

Cash Trading: The cash-trading desk, also known as the single stock or
block desk, is utilized by investors who have orders subject to potential
adverse price momentum, or when they have a strong alpha conviction or
directional view of the stock. Traditionally, the block trading desk was
used to transact large block orders and for capital commitment in favorable
and adverse market conditions. Nowadays, investors additionally use block
desks to transact single stock and multi-stock orders, large and small order
sizes, in times of potential price movement. In these cases, investors rely
on the expertise of block traders and their understanding of the stock, sector,
and market, to determine the appropriate implementation strategy and timing
of order placement. The cash desk has also historically been the desk where
investors would route orders to pay for research and to accumulate credits for
future investment banking allocations from IPOs and secondary offerings.
Fundamental portfolio managers (e.g., stock pickers) who transact single
stock positions are primary clients of the cash desk. We can summarize their
trading goal as to minimize the combination of market impact cost and
adverse price movement.

Program Trading: The program trading desk, also known as the portfolio-
trading desk, is used by investors to trade baskets of stocks. These baskets
are also known as lists, programs, or portfolios. Investors will utilize a pro-
gram trading desk primarily for risk management and cash balancing. In
these cases, the portfolio manager does not typically have a strong short-
term view of a stock and is concerned with the overall performance of the
basket. They seek the expertise of program traders to determine the best
way manage the overall risk of the basket so that they can trade in a more
passive manner and minimize market impact cost. In times of a two-sided
basket consisting of buys and sells, the program trader will trade into a
hedged position to protect the investor from market movement. In times
of a one-sided basket, the program trader will seek to offset orders and partial
orders with the highest marginal contribution to risk. Very often these are the
names with high idiosyncratic or company specific risk, pending news, or
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otherwise deemed as toxic due to liquidity or unstable trading patterns. In-
vestors will transact with a program desk either via an agency execution
or capital commitment. Other investors will solicit the expertise program
trader when they are trading a basket where the sell orders will be financing
the buy orders and wish to keep cash position balanced throughout the day so
that they are not short cash at the end of the day. For program trades, the cap-
ital commitment is also known as a principal trade or risk bid. Quantitative
portfolio managers are the primary clients of the program desk since these
are the investors who more often trade baskets. Their primary trading objec-
tive is to minimize market impact and timing risk.

Electronic Trading: The electronic trading desk, also known as the algo-
rithmic or “algo” desk, is the primary destination for investors who are
seeking to capture liquidity, retain full control of the trading decision, remain
anonymous, and minimize information leakage. Investors will often utilize
an electronic desk when they are not anticipating any type of short-term price
momentum. Here the primary goal of the investor is to gain access to the
numerous market venues and be positioned to capture as much liquidity as
they can within their price targets. Traditionally, the electronic trading
desk was utilized for smaller orders, e.g., � 1e3% ADV, or what was
believed to be “easy” trades. Now, investors use algorithms to trade both
large and small orders, single stock orders and portfolios consisting of hun-
dreds of names or more. Many investors do in fact use algorithms for their
block and portfolio program trading needs, providing they have ample con-
trol over the execution of the algorithm and that the algorithm is customiz-
able to the investment objective of the fund. Electronic trading is performed
on an agency basis only. The primary trading objective of these clients has
been to minimize market impact and opportunity costdthat is, to complete
the entire order without adversely affecting market prices.

RESEARCH FUNCTION
The research function on the equity side also has three main segments and
each is closely interconnected with each of the trading desks. These
research roles are equity analyst, quantitative analyst, and transaction cost
analyst.

Equity analysts evaluate individual companies using primarily fundamental
data and balance sheet information. These analysts then provide ratings on
the company such as buy, sell, hold, or short, or provide price targets or ex-
pected levels of return, based on their earnings and growth expectations. If a
highly regarded analyst changes her rating on a stock, such as changing a
sell rating to a buy rating it is pretty likely that the stock price will move
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and move quickly right after the analyst’s report is made public. Equity an-
alysts do move stock prices and are considered the “rock stars” of invest-
ment research.

Quantitative analysts evaluate the relationship between various factors (both
company and economic) and company returns. They use these factors to
determine what is driving market returns (as opposed to company specific
returns), e.g., growth, value, quality, etc. Quantitative analysts determine
optimal portfolios based on these relationships and their expectations of
future market conditions. They also rely on optimization techniques, statis-
tical analysis, and principal component analysis. However, unlike their eq-
uity analyst’s brethren, quantitative analysts do not move the market or
cause volumes to increase. Portfolio managers do not typically incorporate
recommendations from quantitative analysts directly into their portfolio.
Instead, managers will use quantitative analysis for independent verification
of their own findings, and as an idea generation group. Managers tend to
rerun quantitative analyst studies to verify their results and to see there is
potential from their suggestions. Quantitative analysts are also used at times
to run specified studies, evaluate specific factors, etc. In this role, they serve
as an outsource consultant.

Transaction cost analysts are tasked with evaluating the performance of al-
gorithms and making changes to the algorithms when appropriate. These
analysts study actual market conditions, intraday trading patterns, and mar-
ket impact cost. They perform market microstructure studies. The results
and findings of these studies are incorporated into the underlying trading al-
gorithms and used pretrade models that assist investors in determining
appropriate trading algorithms. Unlike equity and quantitative analysts,
TCA analysts do not make any stock or investment recommendations,
and their research findings do not move stock prices. Buy-side traders
rely on TCA analysts to understand current market conditions and the suite
of trading algorithms.

SALES FUNCTION
The role of the salesperson on the trading floor is to connect the buy-side
client with sell-side research. There are three main areas of the selling func-
tion which follows the research offerings described above. First, equity
sales, also known as research or institutional sales, is responsible for
providing the portfolio manager client with all company research. However,
since the primary concern of the majority of portfolio managers is stock spe-
cific company research, the equity salesperson focuses on providing their
portfolio manager clients with equity analyst research. Since this is the
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research that could potentially move stock prices immediately, it has a high
level of urgency. The program sales trader for the most part takes the lead in
connecting their clients with quantitative research. Since they deal with these
quant managers on a daily basis, they are well aware of their clients’ research
interest. Quant managers do not have the same sense of urgency in reviewing
quant research, since this research is not company specified and will not
move stock prices. Again, they are interested in quant research for verify
their own findings, to gain insight into what is affecting the market, what ap-
proaches are working and not working, and for additional investment ideas.
Buy-side quant managers will often recheck and verify the results of the sell-
side quant research teams before they incorporate any of these findings into
their portfolio. Transaction cost research, as mentioned, is not intended to
provide managers with stock specific information, stock recommendations,
or price targets. TCA research is performed to gain an understanding of
the market. This information is then incorporated into the underlying trading
algorithms and pretrade analytics that are intended to assist investors in
determining the appropriate algorithm for their order.

Subsequently, electronic trading desks usually have a team of analysts that
provide buy-side traders with TCA research. This research will also provide
insight into what algorithms or trading strategies are best suited for various
market conditions. The primary client of TCA research is the buy-side
trader, although recently, a trend has emerged where portfolio managers
(both fundamental and quantitative) are becoming interested in learning
how to incorporate transaction costs into the portfolio construction phase
of the investment cycle and uncover hidden value and performance. TCA
is beginning to target managers as well as traders.

IMPLEMENTATION TYPES
There are two implementation types available to investors: agency execu-
tion and capital commitment (e.g., principal bid). In an agency execution,
the investor requests the broker to transact the order in the market using
best efforts. In an agency execution, the investor incurs all market risk
and actual prices are not known in advance. Investors will receive actual
transaction prices and the fund pays the broker a commission fee to execute
the order via an agency transaction.

In a capital commitment or principal bid transaction, the investor transfers
all price risk to the broker. The investor executes at a predetermined price
such as the current price or closing price, and the broker incurs all risk.
The advantage to the investor with a principal bid is that they receive a
known or specified transaction price and they do not incur any of the
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market risk. The investor pays the broker a fee for this service known as
the principal bid and it is usually higher than the commission of an agency
trade.

ALGORITHMIC DECISION-MAKING PROCESS
It is essential that the portfolio manager clearly specify the trading goal to
their trading team so that the execution strategy will be consistent with the
investment objective and needs of the fund. Brokers then need to ensure that
the algorithmic order submission rules adhere to the execution strategy
specified by the fund. These are accomplished as follows:

To properly structure an execution strategy that is most consistent with the
investment objective, traders need to specify the following:

n Macro Strategy: Macro trading decision consists of how to slice the trade
order over time, either by specifying to participate with a percentage of
market volume or trading via a time slicing strategy, and the benchmark
price such as the open, close, or arrival price at the time the order was
entered into the market. The macro strategy should provide the fund
with the highest likelihood of achieving their investment objective based
on expected market conditions.

n Micro Strategy: Micro strategy consists of specifying how to deviate
from the macro strategy during the day based on price movement, chang-
ing volumes, and/or increased volatility. For example, if a manager has a
buy order and price decreases during the day, the manager may decide to
trade more aggressively to take advantage of the better market prices, or
the manager may elect to trade more passively if she believes the favor-
able trend will continue throughout the day.

The broker and/or algorithm defines order submission rules to ensure that
actual market trades are consistent with the macro and micro decisions spec-
ified by the investor. These are:

n Limit Order Model (LOM): The limit order model determines the best
mix of limit orders and market orders based on the investor specified
goals and actual market conditions at the time of each trade. It is essential
that the portfolio manager to ensure these decisions are consistent with
and adhere to the macro and micro decisions. Passive strategies will uti-
lize a greater amount of limit orders and aggressive strategies will utilize
a larger amount of market orders.

n Smart Order Router (SOR): The smart order router determines where to
route a trade. The SOR will determine the destination with the highest
probability of executing the limit order and will determine the venue
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with the best market price known as the National Best Bid and Offer
(NBBO) for market orders. The SOR monitors real-time data from ex-
change and venues and will also assess activity in dark pool. The SOR
is also tasked with evaluating trading quality to ensure that the manager’s
trading intentions are protected, and that valuable trading information is
not being conveyed to the market.
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Chapter2
Algorithmic Trading

Algorithmic trading represents the computerized executions of financial in-
struments. Algorithms trade stocks, bonds, currencies, and a plethora of
financial derivatives. Algorithms are also fundamental to investment strate-
gies and trading goals. The new era of trading provides investors with more
efficient executions while lowering transaction costs; the result is improved
portfolio performance. Algorithmic trading has been referred to as “auto-
mated,” “black-box,” and “robo” trading.

Algorithmic trading is currently one of the hottest areas of capital expendi-
ture for Wall Street firms (both buy-side and sell-side). There are numerous
conferences and seminars dedicated to algorithmic trading throughout the
United States, Europe, Asia, and Australia. Unfortunately, the amount of ac-
ademic research has not kept pace with the surge in algorithmic trading.
Most industry awareness regarding algorithmic trading has come from
broker-dealers whose marketing information is mainly self-serving with
the main purpose being to increase order flow and business. There is a
strong need for unbiased academic research and a well-tested decision-
making methodology. Throughout this text we seek to bridge the gap be-
tween academia and Wall Street.

Trading using algorithms requires investors to first specify their investing
and/or trading goals in terms of mathematical instructions. Dependent
upon investors’ needs, customized instructions range from simple to highly
sophisticated. After instructions are specified, computers implement those
trades following the prescribed instructions.

Managers use algorithms in a variety of ways. Money management funds-
mutual and index funds, pension plans, quantitative funds and even hedge
funds, use algorithms to implement investment decisions. In these cases,
money managers use different stock selection and portfolio construction
techniques to determine their preferred holdings, and then employ algo-
rithms to implement those decisions. Algorithms determine the best way
to slice orders and trade over time. They determine appropriate price,
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time, and quantity of shares (size) to enter the market. Often, these algo-
rithms make decisions independent of any human interaction.

Broker-dealers and market makers also now use automated algorithms to
provide liquidity to the marketplace. As such, these parties can make mar-
kets in a broader spectrum of securities electronically rather than manually,
cutting costs of hiring additional traders.

Aside from improving liquidity to the marketplace, broker-dealers are us-
ing algorithms to transact for investor clients. Once investment decisions
are made, buy-side trading desks pass orders to their brokers for execution
using algorithms. The buy-side may specify which broker algorithms to
use to trade single or basket orders, or rely on the expertise of sell-side
brokers to select the proper algorithms and algorithmic parameters. It is
important for the sell-side to precisely communicate to the buy-side expec-
tations regarding expected transaction costs (usually via pretrade analysis)
and potential issues that may arise during trading. The buy-side will need
to ensure these implementation goals are consistent with the fund’s invest-
ment objectives. Furthermore, it is crucial for the buy-side to determine
future implementation decisions (usually via posttrade analysis) to contin-
uously evaluate broker performance and algorithms under various
scenarios.

Quantitative, statistical arbitrage traders, sophisticated hedge funds, and the
newly emerged class of investors known as high frequency traders will also
program buying/selling rules directly into the trading algorithm. The pro-
gram rules allow algorithms to determine instruments and how they should
be bought and sold. These types of algorithms are referred to as “black-box”
or “profit & loss” algorithms.

For years, financial research has focused on the investment side of a busi-
ness. Funds have invested copious dollars and research hours on the quest
for superior investment opportunities and risk management techniques, with
very little research on the implementation side. However, over the last
decade, much of this initiative has shifted toward capturing hidden value
during implementation. Treynor (1981), Perold (1988), Berkowitz et al.
(1988), Wagner (1990), and Edwards and Wagner (1993) were among
the first to report the quantity of alpha lost during implementation of the in-
vestment idea due to transaction costs. More recently, Bertsimas & Lo
(1996), Almgren and Chriss (1999, 2000), Kissell et al. (2004) introduced
a framework to minimize market impact and transaction costs, as well as a
process to determine appropriate optimal execution strategies. These efforts
have helped provide efficient implementationdthe process known as algo-
rithmic trading.
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While empirical evidence has shown that when properly specified, algo-
rithms result in lower transaction costs, the process necessitates investors
be more proactive during implementation than they were previously utiliz-
ing manual execution. Algorithms must be able to manage price, size, and
timing of the trades, while continuously reacting to market condition
changes.

ADVANTAGES
Algorithmic trading provides investors with many benefits such as:

n Lower Commissions. Commissions are usually lower than traditional
commission fees since algorithmic trading only provides investors
with execution and execution related services (such as risk manage-
ment and order management). Algorithmic commissions typically do
not compensate brokers for research, activities although some funds
pay a higher rate for research access.

n Anonymity. Orders are entered into the system and traded automati-
cally by the computer across all execution venues. The buy-side trader
either manages the order from within his firm or requests that the order
is managed by the sell-side sales traders. Orders are not shopped or
across trading floor as they once were.

n Control. Buy-side traders have full control over orders. Traders deter-
mine the venues (displayed/dark), order submission rules such as
market/limit prices, share quantities, wait and refresh times, as well as
when to accelerate or decelerate trading based on the investment
objective of the fund and actual market conditions. Traders can cancel
the order or modify the trading instructions almost instantaneously.

n Minimum Information Leakage. Information Leakage is minimized
since the broker does not receive any information about the order or
trading intentions of the investor. The buy-side trader can specify their
trading instructions and investment needs simply by the selection of
the algorithm and specifications of the algorithmic parameters.

n Transparency. Investors are provided with more transparency surround-
ing how the order will be executed. Since the underlying execution
rules for each algorithm is provided to investors in advance, investors
will know exactly how the algorithm will execute shares in the market,
as algorithms will do exactly what they are programmed to do.

n Access. Algorithms can provide fast and efficient access to the
different markets and dark pool. They also provide co-location, low la-
tency connections, which provides investor with benefits of high-speed
connections.

Advantages 25



n Competition. The evolution of algorithmic trading has seen competition
from various market participants such as independent vendors, order
management and execution management software firms, exchanges,
third-party providers, and in-house development teams (DMA) in addi-
tional to the traditional sell-side broker-dealers. Investors have received
the benefits of this increased competition in the form of better execu-
tion services and lower costs. Given the ease and flexibility of choosing
and switching between providers, investors are not locked into any one
selection. In turn, algorithmic providers are required to be more proac-
tive in continually improving their offerings and efficiencies.

n Reduced Transaction Costs. Computers are better equipped and faster
to react to changing market conditions and unplanned events. They are
better capable to ensure consistency between the investment decision
and trading instructions, which results in decreased market impact
cost, less timing risk, and a higher percentage of completed orders
(lower opportunity cost).

DISADVANTAGES
Algorithmic trading has been around only since the early 2000s and it is still
evolving at an amazing rate. Unfortunately, algorithms are not the be all and
end all for our trading needs. Deficiencies and limitations include:

n Users can become complacent and use the same algorithms regardless
of the order characteristics and market conditions simply because they
are familiar with the algorithm.

n Users need to continuously test and evaluate algorithms to ensure they
are using the algorithms properly and that the algorithms are doing
what they are advertised to do. Users need to measure and monitor
performance across brokers, algorithms and market conditions to un-
derstand what algorithms are most appropriate given the type of mar-
ket environment.

n Algorithms perform exactly as they are specified, which is nice when
the trading environment is what has been expected. However, in the
case that unplanned events occur, the algorithm may not be properly
trained or programmed for that specific circumstance, which may lead
to subpar performance and higher costs.

n Users need to ensure consistency across the algorithm and their invest-
ment needs. Ensuring consistency is becoming increasing difficult in
times where the actual algorithmic trading rule is not as transparent as
it could be or when the algorithms are given nondescriptive names
that do not provide any insight into what they are trying to do.
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n Too many algorithms and too many names. VWAP, volume weighted
average price, is an example of a descriptive algorithmic name and is
consistent across brokers. However, an algorithm such as Tarzan is not
descriptive and does not provide insights into how it will trade during
the day. Investors may need to understand and differentiate between
hundreds of algorithms, and keep track of the changes that occur in
these codebases. For example, a large institution may use 20 different
brokers with five to 10 different algorithms each, and with at least half
of those names being nondescriptive.

n Price Discovery. As we discuss in chapter two (Market Microstruc-
ture) the growth of algorithms and decline of traditional specialists and
market marker roles has led to a more difficult price discovery process
at the open. While algorithms are well versed at incorporating price in-
formation to determine the proper slicing strategy, they are not yet
well versed at quickly determining the fair market price for a security.

GROWTH IN ALGORITHMIC TRADING
To best position themselves to address the changing market environment,
investors have turned to algorithmic trading. Since computers are more effi-
cient at digesting large quantities of information and data, more adept at
performing complex calculations, and better able to react quickly to chang-
ing market conditions, they are extremely well suited for real-time trading in
today’s challenging market climate.

Fig. 2.1 depicts the growth of electronic and algorithmic trading from 2000
to 2019. In this illustration, electronic trading refers to any order that is
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routed to a venue electronically and executed via a computer matching en-
gine. These trading destinations include exchanges, alternative trading sys-
tems (ATS), dark pools, and crossing networks. Algorithmic trading refers
to the set of orders where computers make decisions pertaining to order
size, prices, and destination.

Electronic trading at the beginning of the millennium was 33% of total mar-
ket volume. Much of this electronic trading was executed via electronic
communication networks such as Instinet and ITG, and electronic crossing
engines such as ITG/Posit and Instinet after hours crossing network. Elec-
tronic trading quickly grew to about 60% of volume by 2005 and by 2010 it
reached 99.9% of total volume. Currently, electronic trading is about 99.9%
of total volume. Much of the nonelectronic trading occurs via special situ-
ation and negotiated trades that occur via broker intermediary.

Algorithmic trading became popular in the early 2000s. By 2005, it
accounted for about 22% of total volume. The industry faced an accelera-
tion of algorithmic trading (as well as a proliferation of actual trading algo-
rithms) where volumes increased threefold to 77% in 2009. The rapid
increase in activity was largely due to the increased difficulty investors
faced executing orders. Since 2015 algorithmic trading has accounted for
approximately 93% of total market volume. Trades that are not executed
via algorithms are mostly routed to different exchanges, venues, and dark
pools through electronic routing systems.

MARKET PARTICIPANTS
The first part of the millennium 2000e19 was mirrored with changing mar-
ket participants and investors. We analyzed market participant order flow by
several different categories of investors: traditional asset managers
(including mutual funds, indexers, quantitative funds, and pension funds),
retail investors, hedge funds (including statistical arbitrage and proprietary
trading funds), market makers, and high frequency traders. In our definition,
the high frequency trading only consisted of those investors considered
liquid or rebate traders. We discuss the different types of high frequency
trading below.

In 2000e06 market volumes were led by asset managers accounting for
40% of total volume. High frequency traders had almost negligible percent-
ages in 2000 but grew to about 10% of the total market volumes in 2006.
During the financial crisis, high frequency/rebate traders accounted for
about 33% of volumes followed by hedge funds (21%). Asset manager vol-
ume decreased from about 40% (2000) to about 20% (2010), and then
increased to about 35% of market volume where it has held steady over
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the last few years (2017e19). Hedge fund trading volumes as a percentage
of total volume has held steady since 2000 and is about 20% of market vol-
ume. Hedge fund volume does seem to increase during times of market
volatility and was as much as 25%e27% of total market volume during
the US debt crisis. Retail volume has also held steady over this period
and accounts for about 10% of total volume. It is important to denote
here that retail volume includes both traditional retail investors and regis-
tered investment advisors (RIAs). Retail market share decrease during times
of high volatility and financial crisis due to an increase in trading by hedge
funds, quants, and high frequency trader who all seek to realize a profit dur-
ing these turbulent times. This is illustrated in Fig. 2.2.

There is a pleura of so-called market pundits who argue that high frequency
trading accounts for upwards of 50%e70% of total market volumes. These
are much different values than what our research has found: We estimated
high frequency trading to account for only 23%e25% of total volume and
was at a peak of 30%e35% of total market volume during the financial crisis.

What is behind these differences? It just so happens that this difference is due
to the definition of “high frequency” trader. Many have grouped any type of
high turnover strategy as a high frequency trader (our rebate trader definition).
This includes quantitative strategies, hedge fund statistical, broker automated
market making, and high frequency traders. For this instance and throughout
the book, we refer to high frequency trading (HFT) as traders who are seeking
to earn a profit via rebate trading and by uncovering short-term trading pat-
terns from market data and exploiting profiting opportunities. In many cases,
these patterns are determined from the buying and selling pressure from the
other market participants. High turnover strategies, in this case, refer to the
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strategies based on quantitative models, optimizers, arbitrage strategies, pairs-
trading, and more recently, machine learning strategies.

Fig. 2.3 shows a plot of the percentage of total market volume (market share)
for high frequency trading (HFT), auto market making (AMM), hedge fund
quant (Hedge Fund-Quant) and quantitative asset managers (Asset Mgmt-
Quant). In aggregate, these four different high turnover trading strategies
have accounted for between 50% and 70% of market share and has leveled
off to about 60% of market share. Notice the increasing trend of HFT starting
around 2004e04 and peaking at about 30%e35% of total volume during the
financial crisis. HFT trading has since leveled off to about 20%e22% of mar-
ket share. Broker auto market making (AMM) has shown the largest decline
since 2000 where it was at a high of around 25%e30% of total market volume
and has since declined to about 10%e11% of total market volume.

It appears that these self-promoted pundits are only half correct. The total
amount of high turnover volume in the market in 2019 is about 60% of total
market share. But the volume that is most referred to as HFT which consists
of the rebate traders who are seeking to earn a profit by uncovering the
trading intentions of other market participants has declined to just slightly
over 20% of market volume. This HFT volume combined with broker
dealer marketing making activity accounts for about 30% of total market
volume and is consistent with the historical percentage of combined market
maker and specialist market share prealgorithmic trading.

Thus, as the more things change the more they remain the same. The tradi-
tional market making and specialist trading activity has been replaced by
HFT and AMM activity, and with very similar market percentages.
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CLASSIFICATIONS OF ALGORITHMS
One of the more unfortunate events in the financial industry is the prolifer-
ation of the algorithmic nomenclature used to name trading algorithms. Bro-
kers have used catchy names and phrases for the algorithms to have them
stand out from competitors rather than using naming conventions that pro-
vide insight into what it is that the algorithm is trying to accomplish. While
some of the industry algorithms do have logical, descriptive names, such as
“VWAP,” “TWAP,” “Arrival Price,” and “Implementation Shortfall,” there
are many others such as “Tarzan,” “Bomber,” “Lock and Load,” and one of
the all-time favorites “The Goods” although this name is soon to be
replaced. None of these catchy names offer any insight into what it is
that the algorithm is trying to accomplish or the actual underlying trading
strategy.

To shed some light on the naming convention used, we suggest classifying
algorithms into one of three categories: Hyper-Aggressive, Working Orders,
and Passive. These are as follows:

Aggressive: The aggressive family of algorithms (and sometimes hyper-
aggressive strategies) are designed to complete the order with a high level
of urgency and capture as much liquidity as possible at a specified price
or better. These algorithms often use terminology such as “get me done,”
“sweep all at my price or better,” “grab it,” etc.

Working Order: The working order algorithms are the group of algorithms
that look to balance the trade-off between cost and risk, as well as manage-
ment appropriate order placement strategies through appropriate usage of
limit/market orders. These algorithms consist of VWAP/TWAP, POV,
implementation shortfall (IS), arrival price, etc.

Passive: The passive family of algorithms are those algorithms that seek to
make large usage of crossing systems and dark pools. These algorithms are
mostly designed to interact with order flow without leaving a market foot-
print. They execute many of their orders in the dark pools and crossing
networks.

TYPES OF ALGORITHMS
Single Stock Algorithms: Single stock algorithms interact with the market
based on user specified settings and will take advantage of favorable market
conditions only when it is in the best interest of the order and the investor.
Single stock algorithms are independent of one another while trading in the
market and make decisions based solely on how those decisions will affect
the individual order.
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VWAP:Volume weighted average price. These algorithms participate in pro-
portion with the intraday volume curve. If 5% of the day’s volume trade in
any specified period then the VWAP algorithm will transact 5% of the order
in that period. The intraday volume profile used to follow a U-shaped pattern
with more volume traded at the open and close than midday. But recently,
intraday volume profiles have become more back-loaded and resemble
more of a J-shaped pattern than U-shaped pattern. A VWAP strategy is a
static strategy and will remain constant throughout the day.

TWAP: Time weighted average price. These algorithms execute orders
following a constant participation rate through the entire day. A full day or-
der will trade approximately 1/390 of the order in each 1 minute bucket
(there are 390 minutes in the trading day in the US). It is important to
note that many TWAP algorithms do not participate with volume in the
opening and closing auctions since there is no mathematical method to deter-
mine the quantity of shares to enter into these auctions. In Optimal Trading
Strategies, the TWAP curve was referred to as the uniform distribution or
uniform strategy and was used for comparison purposes. A TWAP strategy
is a static strategy and will remain constant throughout the day.

POV/Volume: These strategies are referred to volume inline, percentage of
volume (POV), of participation rate algorithms. These algorithms participate
with market volume at a prespecified rate such as 20% and will continue to
trade until the entire order is completed. The algorithms will trade more
shares in times of higher liquidity and fewer shares in times of lower
liquidity, and thus react to market conditions (at least to changing volume
profiles). One drawback to these volume strategies is that they do not guar-
antee completion of the order by the end of the time horizon. For example, if
we are trading an order that comprises 20% of the day’s volume at a
POV ¼ 20% rate, but the actual volume on the day is only have of its normal
volume the order would not complete by the end of the day. As a safety
around potential uncompleted orders, some brokers have offered a parameter
to ensure complete by the end of the period. This parameter serves as a min-
imum POV rate and adjusts in real-time to ensure order completion by the
designated end time.

Arrival Price: The arrival price algorithm has different meanings across
different brokers and vendors. So it is important to speak with those parties
to understand the exact specifications of these algorithms. But in general, the
arrival price algorithm is a cost minimization strategy that is determined
from an optimization that balances the trade-off between cost and risk
(e.g., Almgren and Chriss, 1997). Users specify their level of risk aversion
or trading urgency. The resulting solution to the optimization is known as
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the trade schedule or trade trajectory and is usually front-loaded. However,
some parties solve this optimization based on a POV rate rather than a static
schedule to take advantage of changing liquidity patterns.

Implementation Shortfall: The IS algorithm is like the arrival price algorithm
in many ways. First, its meaning varies across the different brokers and
different vendors, so it is important to speak with those parties to under their
exact specifications. Second, we base the implementation shortfall algorithm
on the Perold’s (1987) paper and seek to minimize cost through an optimi-
zation that balances the trade-off between cost and risk at a user specified
level of risk aversion. In the early days of algorithms trading, the arrival price
and IS algorithms were identical across different brokers. Thus, to distin-
guish implementation shortfall from arrival price, brokers began to incorpo-
rate real-time adaptation tactics into the implementation shortfall logic.
These rules specify how the initial solution will deviate from the optimally
prescribed strategy in times of change market liquidity patterns and market
prices. Thus, while arrival price and IS still do not have a standard definition
across the industry, the consensus is that the arrival price algorithm is con-
stant while the IS algorithm incorporates a second level of adaptation tactics
based on market volumes and market prices.

Basket Algorithms: Basket algorithms also known as portfolio algorithms are
algorithms that manage the trade-off between cost and total basket risk based
on a user specified level of risk aversion. These algorithms will manage risk
throughout the trading day and adapt to the changing market conditions based
on user specifics. The algorithms are usually based on a multi-trade period
optimization process. They make real-time trading decisions based on how
those decisions will affect the overall performance of the basket. For example,
a basket algorithm may choose to not accelerate trading in an order even when
faced with available liquidity and favorable prices if doing so would increase
the residual risk of the basket. Furthermore, the basket algorithm may be more
aggressive in an order even in times of illiquidity and adverse price movement
if doing so would result in a significant reduction of residual basket risk. The
biggest difference between single stock and basket algorithms is that the
basket algorithm will manage cost and total basket risk (correlation and
covariance) whereas the single stock algorithm will seek to manage the cost
and individual risk of the stock. Important basket trading constraints include
cash balancing, self-financing, minimum and maximum participation rate.

Risk Aversion Parameter. The meaning of the risk aversion parameter used
across the different brokers will vary. First, the optimization technique is not
constant. For example, some parties will optimize the trade-off between cost
and variance since it fits a straightforward quadratic optimization formulation.
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Others optimize based on the trade-off between cost and standard deviation
(square root of variance) which results in a nonlinear optimizations formula-
tion. Second, the definition of the risk aversion parameter, usually denoted
by l, varies. Some brokers specify l ¼ dCost/dRisk where l> 0. Some
map l to be between 0 and 1 (0 ¼ most passive and 1 ¼ most aggressive),
and still others map risk aversion to be between one and three or 1 to 10.
Thus selecting a value of l¼ 1 could mean the most aggressive strategy, the
most passive strategy or somewhere in the middle. Still others use a qualitative
measure such as passive, medium, aggressive, etc., rather than a specified value
of l. Investors need to discuss the meaning of the risk aversion parameter with
their providers to determine how it should be specified in the optimization
process to ensure consistency across trading goal and investment objective.

Black-Box Algorithms The family of black-box trading algorithms are
commonly referred to as profit and loss algorithms and/or “robo” trading al-
gorithms. These include all algorithms that make investment decisions based
on market signals and execute decisions in the marketplace. Unlike the
implementation algorithms that are tasked with liquidating a predetermined
position within some specified guidelines or rules, the black-box algorithms
monitor market events, prices, trading quantities, etc., for a profiting oppor-
tunity search. Once profiting opportunity appears in the market, the algo-
rithm instantaneously buy/sell the shares. Many black-box algorithms
have time horizons varying from seconds to minutes, and some longer
time horizons run from hours to days. While many investors use black-
box algorithms, they are still primarily tools of the quants, and especially
when it comes to HFT. Some black-box trading algorithms are pairs-
trading, auto market making, and statistical arbitrage. Black-box trading stra-
tegies and corresponding mathematics are discussed in detail in chapter 13.

Algorithmic usage patterns have also changed with the evolution of trading
algorithms. In the beginning, algorithmic trading was mostly dominated by
“VWAP/TWAP” trading that utilized a schedule to execute orders. The
advantage: investors acquired a sound performance benchmark, “VWAP”,
to use for comparison purposes. The improvement in algorithms and their
ability to source liquidity and manage microorder placement strategies
more efficiently lead the way for price-based algorithms such as “Arrival
Price,” “Implementation Shortfall,” and the “AIM” and “PIM” tactics. Dur-
ing the financial crisis, investors were more concerned with urgent trading
and sourcing liquidity and many turned to “Liquidity Seeking” algorithms
to avoid the high market exposure present during these times. The financial
crisis resulted in higher market fragmentation owing to numerous venues
and pricing strategies and a proliferation of dark pools. However, the indus-
try is highly resourceful and quick to adapt. Firms developed internal
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crossing networks to match orders before being exposed to markets,
providing cost benefits to investors, and incorporating much of the pricing
logic and smart order capabilities into the “Liquidity Seeking” algorithms.

Algorithmic utilization leveled offer recently. Currently, the most used al-
gorithms consist of VWAP/TWAP (33%), Liquidity Seeking Algorithms
Volume (25%), POV (22%), Arrival Price/IS (8%), Portfolio Algorithms
(8%), and other types of algorithms (3%). This is shown in Fig. 2.4.

ALGORITHMIC TRADING TRENDS
Average Daily Volume. The average daily volume for large cap stocks was
just under four million shares per day in the beginning of 2000. This amount
increased to over 10 million shares per day during the financial crisis in
2008e09. Average daily volumes have declined to just slightly over four
million shares per day during 2017e19.

Average Trade Size. The average trade size has suffered a significant
decline during the algorithmic trading era. In the beginning of 2000, the
average trade size was over 1200 shares per transaction. But since the
advent of algorithmic trading the average trade size has dropped to just
over 200 shares per transaction. This quantity, however, is misleading
and the median trade size is only 100 shares. Due to large block trades con-
sisting of crosses mostly during the opening and closing auctions, and at
dark pools, the distribution of trade size is significantly right skewed, results
in an average size much greater than its median.

0%

20%

40%

60%

80%

100%
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19

Algorithmic Usage

VWAP/TWAP Arrival/IS Liquidity Volume Portfolio Other

80 80 75
54

43 34 29 21 18 20 22 25 25 27 30 33 34 32 31 33

0 0
0

15
22

29 29
27 24 18 11 11 10 12 10 12 13 12 11 8

0 0
0 15 14 15 19

27 33 35 37 37 36 34 30 25 24 24 24 25

10 12 20
15 17 17 15 16 14 18 18 15 16 14 18 18 21 23 23 22

0 0 0 0 1 4 5 6 6 5 6 7 7 5 8 9 6 7 8 910 8 5 22 2 3 3 5 5 6 5 5 8 4 3 2 2 3 3

n FIGURE 2.4 Algorithmic Usage.

Algorithmic Trading Trends 35



Block Trades. Block trading has also experienced a significant decrease in
activity. In 2000 the percentage of block volume was more than 50% of to-
tal market volume and block trades accounted for more than 2% of all trades
in the US. But since algorithmic trading as arrived, block volume has
decreased to less than 5% of total volume and the number of block trades
is less than 5% block trades accounts for less than 0.1% of all market trades.
Large orders are still traded in the market. But they are executed via 100
share lots. In today’s markets, most block trades occur in the opening
and closing auctions, and in dark pool trades (Figs. 2.5e2.8).
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DAY OF WEEK EFFECT
Historically there has always been a day of week pattern where stocks would
trade the least amount onMon, increasing onTue andWed and then decreasing
on Thu and Fri. To determine if there is still a day of week effect, we compiled
daily data for large cap and small cap stocks over the 3-year period 2016e18.
When compiling our data, we eliminatedweeks that included the last day of the
month to avoid bias associated with end of the month trading.

n Large cap stocks. Daily trading volume for large cap stocks gradually
increased during the week over all 3 years. Monday was the lowest
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trading volume day with a daily volume of 95%e96% of average. Friday
volume was the highest trading volume day and was 108%e110% higher
than average. The large spike in Friday volumes is believed to be due to
investors’ not wanting to hold open positions over a weekend due to the
increased market risk. This is illustrated in Fig. 2.9. Month-End trading
volumes for large cap stocks are 110%e112% higher than an average
trading day. This is illustrated in Fig. 2.10.

n Small cap stocks. Daily trading volume for small cap stocks followed a
very similar pattern to large cap stock. Average Monday volume over our
analysis period was about 95% of the weekly daily volume and then
spiking to 112%e115% on Friday. The large spike in Friday volumes
in small cap stocks is believed to be due to funds not wanting to be exposed
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to market risk over an entire weekend. This is illustrated in Fig. 2.11.
Month-End trading volumes for small cap stocks are 110%e120% higher
than an average trading day. This is illustrated in Fig. 2.12.

INTRADAY TRADING PROFILES
We examined the intraday trading patterns for spreads, volume, volatility,
and intraday trading stability. These observations are as follows:

n Spreads. Intraday spreads measured as the average bid-ask spread in
15-minute intervals. Spreads were most pronounced at the opening for
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large and small cap stocks. But spreads were widest for small cap
stocks. Spreads did not spike into the close. See Fig. 2.13.

n Volatility. Intraday volatility is measured as the average high-low per-
centage price range in each fifteen-minute trading period. Intraday vola-
tility followed a similar pattern to spreads with the highest volatility
occurring at the open and then leveling off at about 10:00e10:30a.m.
The high spreads and volatility at the open are due to the price discov-
ery process where algorithms are working to figure out the fair value
price. Prealgorithmic trading, specialists and market makers provided in-
vestors price discovery by balancing buy and sell orders from their order
book. But now, since orders are traded in market via algorithms, the al-
gorithms need to figure out the fair value price. These data find that al-
gorithms do uncover the fair value price, but it takes longer than would
have occurred in the specialist and market maker environment. This is
one function that algorithmic trading has not improved. See Fig. 2.14.

n Volume. Intraday volume is measured as the percentage of the day’s
volume that traded in 15-minute trading period. Intraday volumes have
historically followed a U-shaped pattern where volume was high at the
open, decreasing into midday, and then increasing again into the close.
However, over the last several years, we have seen a different intraday
volume profile. Volume gradually decreases from the open through
midday and then volume spikes dramatically into the close. The spike
in end of day volume is believed to be due to funds wanting to com-
plete orders before the end of the day so that they are not exposed to
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overnight risk and possible. It is also believed that much of the end of
the day trading volumes is due to funds trading exchange traded funds
which trade with more volume at the close due to how the ETF is
being valued. See Fig. 2.15

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

LC

SC

9:
30

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

12
:3

0

13
:0

0

13
:3

0

14
:0

0

14
:3

0

15
:0

0

15
:3

0

Intraday Volatility

n FIGURE 2.14 Intraday Volatility.

0%

5%

10%

15%

20%

25%

30%
Intraday Volume

LC

SC

9:
30

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

12
:3

0

13
:0

0

13
:3

0

14
:0

0

14
:3

0

15
:0

0

15
:3

0

n FIGURE 2.15 Intraday Volume.

Intraday Trading Profiles 41



n Coefficient of Variation. Coefficient of variation is measured as the
average standard deviation of interval volume. It is an indication of trading
stability. We found high variation in volume levels at the open, leveling
off midday, and then decreasing into the close. Small cap variability levels
are about twice as high as large cap variability. See Fig. 2.16.

TRADING VENUE CLASSIFICATION
Displayed Market
A displayed exchange is a trading venue that discloses order book informa-
tion. This consists of bid and offer prices, share quantities, and depth of book.
This allows investors to compute expected transaction prices for a specified
number of shares and the expected wait time for a limit order to transact since
they have knowledge where the order would sit in queue and how many or-
ders would need to transact ahead of them before their order will execute. Ex-
amples of displayed exchanges are NYSE and NASDAQ.

Dark Pool
A dark pool is a crossing network or other type of matching system that
does not display or disseminate order information such as bid and offers,
depth of book number of orders, buy/sell imbalances, etc. Customers enter
buy/or sell orders into the dark pool. The order is executed only if there is a
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match. Dark pools do have drawbacks, however. This includes no prior
knowledge of order execution or where orders will sit in the order book
queue. The dark pool’s opaque/nontransparent nature makes it difficult
for customers to determine if a market order or marketable limit order
will execute at specified prices. In addition, it is problematic to calculate
the likelihood that a limit order will be executed at a specified price incre-
ment since the customer does not know where it will sit in queue. An advan-
tage of dark pool is that since order details are not disseminated there is no
information leakage. Investors can enter large block orders without showing
their hand to market participants. Dark pools also allow investors to cross at
the midpoint of the bid-ask spread, and are maintained by brokers and third-
party vendors. Broker “internal dark pools” are used for matching internal
and client orders away from the displayed exchanges. Third-party dark
pools provide investors with opportunity to trade large block positions
anonymously and thus reducing information leakage and market impact.

Dark Pool Controversies
Historically there has been a large amount of debate surrounding dark pool
executions, adverse selection, and toxic order flow. Adverse selection refers
to situations when you use a dark pool and have the order executed fully
(100%). Subsequent price movement is in your favor (e.g., buys become
cheaper and sells become high) so you would have been better off waiting
to make the trade. And when you do not execute in the dark pool or execute
less than the full order (<100%) the subsequent price movement is away
from your order (e.g., buys become more expensive and sells become lower
in value). The belief is that there is either some information leakage occurring
in the dark pool or the interaction with high frequency orders is toxic, mean-
ing that the HFTs can learn about the order such as the urgency of the investor
or the number of shares that still need to be executed. In turn, they adjust their
prices based on leaked knowledge. However, we have not yet found evidence
of adverse selection in dark pools to confirm these suspicions.

But let us evaluate the above situation from the order level. Suppose we
have a buy order for 100,000 shares and there is a seller with an order
for 200,000 shares. Thus, there is a sell imbalance of �100,000 shares. If
both parties enter the order into the crossing network (dark pool or other
type of matching system) there will be 100,000 shares matched with the
buy order being 100% filled and the sell order being only 50% filled.
The seller will then need to transact another 100,000 shares in the market
and the incrementing selling pressure will likely push the price down further
due to the market impact cost of their order. So, the downward price move-
ment is caused by the market imbalance, not by the dark pool. Next,
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suppose that the seller only has 50,000 shares. Thus, there is a þ50,000 buy
imbalance. If these orders are entered the crossing network on 50,000 shares
of the buy order will match. The buyer will then need to transact those in-
cremental 50,000 shares in the displayed market where their buying pres-
sure will likely push the price up further. Thus, we can see that the
adverse price movement is caused by the market imbalance and not the
dark pool. This type of price movement is commonly observed in times
of market imbalances.

To be fair, there was a time when dark pools and venues allowed flash order
to be entered into their systems. These flash orders would provide some
market participants with a preview of whether there would be a match
before the entire marketplace. Many believed that this provided an unfair
advantage to those privileged to these flash orders. Flash trading is no
longer allowed in any of the market venues.

TYPES OF ORDERS
The market allows numerous different types of orders such as market, limit,
stop loss, etc. But the three most important order types for algorithmic
trading are market, limit, and marketable limit order.

Market Order: A market order specifies to the algorithm to buy or sell at the
best available market price. This order is most likely to be executed because
there are no restrictions on its price, and it will not be placed into an order
book. The disadvantage is that in today’s markets, prices can move away
so quickly that the best ask or best bid could in effect be much higher or
much lower than they were at the time the order was routed for execution.
Market order will “take” liquidity.

Limit Order: A limit order specifies to the algorithm to buy or sell at
the specified limit price or better. In most cases the limit order will be entered
into the order book of the exchange or venue and is subject to the queue
before it is eligible to be executed. For example, in price-time priority, exist-
ing orders at that price or better will need to transact before that order with an
offsetting buyer. A limit order is not guaranteed to execute, but provides
some safety surrounding the execution price and ensures that the execution
will not be worse than the prespecified limit price. A limit order will “pro-
vide” liquidity and is also referred to as posting an order.

Marketable Limit: A marketable limit order is an order that specifies to the
algorithm to buy or sell at a specified price or better. This order will either be
executed in the market at the specified price or better, or be canceled if there
are no existing orders at that price or better in the market.
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REVENUE PRICING MODELS
Currently there are three different pricing models used by trading venues:
maker-taker, taker-maker, also known as inverted pricing models, and com-
mission based. All the different models are put forth to attract as much
liquidity as possible to their exchange.

Maker-Taker Model. In the maker-taker model, the maker is the investor
posting and providing liquidity. In return, the maker is paid a rebate to pro-
vide liquidity to the exchange, and the taker of liquidity is charged a larger
transaction fee than the rebate paid to the maker. The rebate is only pro-
vided if a transaction takes place. Thus, investors are incentivized to provide
liquidity to the exchange.

Taker-Maker (Inverted) Model. In the taker-maker model, the investor post-
ing the order is charged a fee for supplying liquidity and the investor taking
the liquidity is provided a rebate. Why would investors pay to provide
liquidity when they could enter liquidity on another venue and receive a
rebate for this service? The answer is simple. Suppose the investor is at
the end of a long price-time priority queue. The investor could increment
their bid or offer price costing them a full price increment. However, a bet-
ter option that allows them to jump to the top of the queue is to place the
order on a taker-maker exchange, where the rebate charged would still be
less than the price increment. Hence, liquidity taking investors have two op-
tions; one being charged a fee to take the liquidity and another being paid to
take liquidity. At the same price, rational investors would always select the
option where they would be paid a rebated as opposed to having to pay a
rebate. The taker-maker model allows investors to jump to the front of
the line for a small fee. As long as this fee is less than the full price incre-
ment (less any expected rebate the investor is expected to receive from the
transaction) they would select the pay-to-post option. The option proves
valuable in situations where investors are looking to improve the best mar-
ket price or utilize a market order where they would pay the entire spread
and rebate in addition to crossing the spread.

Commission. In the commission-based model, both the liquidity provider
and liquidity supplier are charged a fee for transacting with liquidity.
This was the original pricing model of exchanges, but currently attracts
the least amount of interest. Investors could place on order on a
commission-based venue and they could jump to the front of the queue
(similar to with the taker-maker model). Although there is no incentive
for the liquidity taker to transact with that exchange over a maker-taker ex-
change unless the commission fee is less than the rebate. Commission fee
structures are popular with dark pools and crossing networks where
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investors can transact within the bid-ask spread, thus receiving better prices
even after commissions paid.

Order Priority
Currently there are two types of priority models in use: “Price-time” priority
and “price-size” priority. In price-time models, orders receive execution pri-
ority based on the time the order was entered into the venue. Orders are
sorted based on price and then time so that the best priced and longest
standing orders are executed first. In price-size models, orders are sorted
based on price and then order size so that the largest orders are executed
first. This incentivizes investors to enter larger orders to move to the front
of the line, rather than increase their price or submit orders to a taker-maker
model. Investors with large orders are often encouraged to utilize the price-
size priority models.

EXECUTION OPTIONS
Investors can transaction orders via two different execution options: agency
transaction and principal bid (capital commitment).

Agency Transaction. In an agency transaction the investor provides the bro-
ker with the order or basket to trade in the market on their behalf. The broker
exerts “best efforts” to achieve the best prices for the investor. They receive a
commission for the role in the execution. The investor, however, incurs all
market risk and price uncertainty. For example, if prices for a buy order in-
crease during trading investors will receive less favorable prices, but if prices
decrease investors will receive more favorable prices. Investors do not know
what the actual executions prices when executing via an agency execution.
The brokers profit in an agency execution will be the commissions received
less any applicable fees incurred during trading.

Principal Bid. A principal bid, also known as a capital commitment or risk
bid, is when the investor provides the broker with the order or basket, and
the broker provides the investor immediate executions at specified prices
such as the day’s closing price or the midpoint of the bid-ask spread at
some agreed upon point in time. The broker charges the investor a premium
(e.g., the principal bid) which is more than the standard agency commission
fee. In this case, the investor transfers all risk and price uncertainty to the bro-
ker. If the broker can transact the acquired position or basket in the market at a
lower cost than the principal bid premium, they will incur a profit, but if they
incur a cost higher than the principal bid premium, they will incur a loss. The
advantage that brokers often have over investors in a principal bid transaction
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is that they have an inventory of customer order flow that could be used to
offset the acquired position, they may have potential hedging vehicles such
as futures, ETFs, etc. that will allow them to trade more passively and incur
lower costs. Quite often investors need to implement an investment decision
within some specified time constraint which may lead to higher transactions
costs. Brokers are not necessarily tied to these requirements.

A principal bid for an order can occur for a single stock order or a basket of
stock. For a single stock order, the broker will be provided with the name of
the stock and shares to trade. Depending on the relationship between broker
and investors, the broker may or may not be provided with the order side. The
broker will then provide the investor with the principal bid for the order. If
they are not provided with the side, they may provide the investor with
two-way market. Since the broker knows the exact stock, they can incorpo-
rate actual market events and company specific risk into the principal bid pre-
mium. For a basket principal bid, investors will often solicit bids from
multiple brokers. To keep their trading intentions and actual orders hidden
until they select the winning broker, they only provide the brokers with a
snap shot of the trade list: includes average order size, trade list value, vola-
tility, risk, tracking error, and depending upon their relationship, a breakdown
by side, although the sides may simply be listed as side A and side B. Since
the broker is not privileged to the actual names in the trade list, they incur a
second level of risk. Thus, they often factor in a buffer to their principal bid
premium to account for not knowing the exact names or position sizes.

ALGORITHMIC TRADING DECISIONS
As the trading environment has become more complex and competitive, in-
vestors have turned to “efficient” algorithms for order execution and navi-
gation. However, utilization of algorithms alone does not guarantee better
performance. Investors need to become more proactive than a simple “set
and forget” mindset. They need to specify an appropriate set of algorithmic
trading rules and corresponding parameters, and most important, ensure that
the implementation parameters are consistent with the.

There are four different phases or algorithmic trading: macro, micro, limit
order pricing, and smart order routing. These are explained as follows:

Macro Level Strategies
The macro level strategy decision rules consist of specifying an appropriate
optimal trading strategy (e.g., order slicing schedule or POV rate) and real-
time adaptation tactics that will take advantage of real-time market condi-
tions such as liquidity and prices when appropriate. This type of
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decision-making process is consistent with the framework introduced by
Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss (1999,
2000), Kissell and Glantz (2003), and Kissell et al. (2004). For investors,
macro level trading specifications consists of a three-step process.

1. Choose Implementation Benchmark
2. Select Optimal Execution Strategy
3. Specify Adaptation Tactics

Micro Level Decisions
The microlevel decision rules consist of the investor specifying when and
how the algorithm is to adapt to changing market conditions and when it
is in the best interest of the fund to deviate from the optimally prescribed
macro strategy. In situations where the exchange fees are high, optimizing,
crossing, and micromanagement on each exchange can also lead to substan-
tial cost savings.

Limit Order Models
Limit order models determine the appropriate mix of limit and market or-
ders to best adhere to the higher-level macro goals. The limit order model
is a probabilistic model that considers current market conditions, price mo-
mentum, order book information, macro goal and timing. Traditionally,
limit order models will determine the probably that an order will execute
in the market, at a stated price, and within a stated amount of time. The limit
order model here is modified limit order model with output being a mix of
prices and share quantities to ensure completion by the end of the time (or at
least a high enough likelihood of completion) rather than a probability es-
timate of executing at a specified price point.

Smart Order Routers
The smart order router (SOR) is responsible for routing the child orders to
the different exchanges, venues, and dark pool. The SOR will collect,
monitor, and maintain trading activity data at the different venues and
dark pools throughout the day using market/public data and in-house trans-
actions. The SOR determines the likelihood of executing an order at each of
the different venues based on frequency of trading and where the order
would reside in the order book queue at that price. If the trading frequency
and all else is equal across two venues, the SOR will route the limit order to
the venue where it has the highest probability of executing at the specified
price and within the desired amount of time.
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To best address these questions, investors need a thorough understanding of
market impact, timing risk, and efficient intraday optimization. Readers are
provided with a detailed explanation of the Algorithmic Decisions Making
Process in a later chapter.

ALGORITHMIC ANALYSIS TOOLS
Pre-Trade Analysis
Pretrade analysis provides investors with the necessary data to make informed
trading decisions on both the macro and microlevels, and serves as input into
the algorithms. Pretrade provides investors with liquidity summaries, cost and
risk estimates, and trading difficulty indicators to screen which orders can be
successfully implemented via algorithmic trading and which orders require
manual intervention. It also provides potential risk reduction and hedging op-
portunities to further improve algorithmic execution strategies. Pretrade data is
comprised of current prices and quotes, liquidity and risk statistics, mo-
mentum, and an account of recent trading activity. This also provides inves-
tors with necessary data to develop short-term alpha models.

Intraday Analysis
Intraday analysis is used to monitor trading performance during trading.
These systems will commonly provide in real-time the number of shares
executed, the realized costs for those executed shares, the price movement
since trading began (which translates to either a sunk cost or savings), and
the expected market impact cost and timing risk for the remaining shares
based on the implementation strategy and expected market conditions (which
could be different from those expected at the beginning of trading). Some of
the more advanced intraday analysis systems will provide z-score estimates
which is the projected risk adjusted trading cost for all shares (based on strat-
egy and market conditions), as well as comparisons to projected final trading
costs for different algorithms and strategies. The intraday analysis systems are
used by traders to evaluate market conditions and revise their algorithms.

Post-Trade Analysis
Posttrade analysis is a two-part process that consists of cost measurement
and algorithm performance analysis. First, cost is measured as the differ-
ence between the actual realized execution price and the specified bench-
mark price. This allows investors to critique the accuracy of the trading
cost model to improve future cost estimates and macro strategy decisions,
and provide managers with higher quality price information to improve in-
vestment decisions. Second, algorithmic performance is analyzed to assess
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the ability of the algorithm to adhere to the optimally prescribed strategy, its
ability to achieve fair and reasonable prices, and determine if the algorithm
deviates from the optimally specified strategy in an appropriate manner. In-
vestors must continuously perform posttrade analysis to ensure brokers are
delivering as advertised, and question those executions that are out of line
with pretrade cost estimates.

HIGH FREQUENCY TRADING
HFT is the usage of sophisticated mathematical techniques and high-speed
computers to trade stocks, bonds, or options with the goal to earn a profit.
This differs from the execution trading algorithms that are tasked with
implementing an investment decision that has previously been determined.
In other words, the HFT system makes both the investment and trading de-
cisions simultaneously. High frequency trading in this sense is also called
“black-box” and “robo” trading.

HFT strategies can be classified into three different styles: Auto Market Making
(AMM), Quant Trading/Statistical Arbitrage, and Rebate/Liquidity Trading.
Donefer (2010) provides a similar classification in “Algos Gone Wild,” Journal
of Trading (Spring 2010). There is often some overlap across these styles as we
point out below, but for the most part, each of these styles has completely
different goals and objectives. In short, HFT has these features:

n Automated trading. Algorithms determine what to buy and what to
sell, as well as the microorder placement strategies such as price, size,
and timing of the trade. These decisions are determined from actual
real-time market data including price signals, momentum, index or
sector movement, volatility, liquidity, and order book information.
These decisions are made independent of human interaction.

n No net investment. HFT does not require a large cash inflow since the
inventory imbalances are netted out by the close each day. HFT strate-
gies take both long and short positions in different names and close
these positions before end of day so that they do not take on any over-
night risk. In cases where the HFT holds overnight positions they will
mostly likely use the proceeds from short sales to pay for the buys.

n Short trading horizons. Depending upon the strategies, HFT time
horizons can vary from seconds to minutes, but also up to hours.

Auto Market Making
AMM provides the financial community with the same services as the tradi-
tional market makers or specialist. The main difference, however, is that
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rather than employing human market makers the AMM system uses
advanced computer systems to enter quotes and facilitate traders. The regis-
tered AMM still has an obligation to maintain a fair and orderly market,
provide liquidity when needed, and provide market quotes a specified
percentage of the time.

AMM systems automatically enter bids and offers into the market. After the
AMM system transacts with a market participant they become either long or
short shares and they will seek to offset any acquired position through
further usage of limit orders. The auto market making systems looks to
profit from buying at the bid and selling at the offer and earning the full
spread. And as an incremental incentive, registered auto market maker firms
are often provided an incremental rebate for providing liquidity. Therefore,
they can profit on the spread plus rebates provided by the exchange. This is
also causing some difficulty for portfolio managers seeking to navigate the
price discovery process and determine fair value market prices.

AMM black-box trading models will also include an alpha model to help
forecasts short-term price movement to assist it in determining the optimal
holding period before being forced to liquidate an acquired position to avoid
a loss. For example, suppose the bid-ask spread is $30.00 to $30.05 and the
AMM system bought 10,000 shares of stock RLK at the bid price of
$30.00.If the alpha forecast expects prices to rise the AMM will offer the
shares at the ask price of $30.05 or possibly higher in order to earn the
full spread of $0.05/share or possibly more. However, if the alpha forecast
expects prices to fall, the AMM system may offer the shares at a lower price
such as $30.04 to move to the top of the queue or if the signal is very strong
the AMM systems may cross the spread and sell the shares at $30.00 and
thus not earn a profit, but not incur a loss either.

Most AMM traders prefer to net out all their positions by the end of the day
so that they do not hold any overnight risk. But they are not under any obli-
gation to do so. They may keep positions open (overnight) if they are prop-
erly managing the overall risk of their book or if they anticipate future
offsetting trades/orders (e.g., they will maintain an inventory of stock for
future trading). Traditional AMM participants continue to be concerned
about transacting with an informed investor, as always, but it has become
more problematic with electronic trading since it is more difficult to infer
if the other side is informed (have strong alpha or directional view) or un-
informed (e.g., they could be a passive indexer required to hold those
number of shares), since the counterparties identity is unknown.
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Some of the largest differences between AMM and traditional MM is that
the AMM maintains a much smaller inventory position, executes smaller
sizes, and auto market makers are not committing capital for large trades
as the traditional market makers once did.

Quantitative Trading/Statistical Arbitrage
Traditional statistical arbitrage trading is trying to profit between a mispricing
in different markets, in indexes, or even ETFs. Additionally, statistical arbi-
trage trading strategies in the high frequency sense will try to determine prof-
iting opportunities from stocks that are expected to increase or decrease in
value, or at least increase or decrease in value compared to another stock
or group of stocks (e.g., relative returns). Utilizing short-time-frame “long-
short” strategies relies on real-time market data and quote information, as
well as other statistical models (such as PCA, probit and logit models,
etc.). These traders do not necessarily seek to close out all positions by the
end of the day in order to limit overnight risk, because they are based on
alpha expectations and the profit and loss is expected to be derived from
the alpha strategies, not entirely from the bid-offer spread. This is the tradi-
tional statistical arbitrage strategies in the past, but the time horizon could be
much shorter now due to potential opportunity, better real-time data, and
faster connectivity and computational speeds. This category of trading could
also include technical analysis based strategies as well as quant models (pairs,
cointegration). These types of trading strategies have traditionally been
considered as short-term or medium-term strategies, but due to algorithmic
and electronic trading, and access to an abundance of real-time data and faster
computers, these strategies have become much more short-term, reduced to
hours or minutes, and are now also considered as HFT strategies. However,
they do not necessarily need to be that short of time or an HFT strategy.
These participants are less constrained by the holding period of the positions
(time) and most concerned by the expected alpha of the strategy.

Rebate/Liquidity Trading
This is the type of trading strategy that relies primarily on market order flow
information and other information that can be inferred or perceived from
market order flow and real-time pricing including trades, quotes, depth of
book, etc. These strategies include “pinging” and/or “flash” orders, and a
strong utilization of dark pools and crossing venues (e.g., nontraditional
trading venues). Many of these nontraditional trading venues have struc-
tures (such as the usage of flash orders) that may allow certain parties to
have access to some information before other parties. These traders seek
to infer buying and selling pressure in the market based on expected order
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flow and hope to profit from this information. The liquidity trading strate-
gies can be summarized as those strategies that seek to profit through inef-
ficient market information. What is meant by this is that the information that
can be inferred, retrieved, processed, computed, compiled, etc., from market
data to generate a buy or sell signal, through the use of quick systems and
better computers, infrastructure, location of servers, etc. co-location, ping-
ing, indication of interests (IOIs), flash orders. The “liquidity trading”
HFT is often the category of HFT that is gaining the most scrutiny and
questions in the market. Market participants are worried that these strategies
have an unfair advantage through the co-location, available order types,
ability to decipher signals, etc. These participants counterargue that they
adhere to the same market rules and have an advantage due to their pro-
gramming skills or mathematical skills, better computers, connectivity
(e.g., supercomputers) and co-location of servers, which is available to all
market participants (albeit for a cost).

Another variation of the rebate trader is an opportunistic AMM. This is
again like the AMM and the traditional market-making role, but the oppor-
tunistic trader is not under any obligations to provide liquidity or maintain a
fair and orderly market. These market participants will provide or take
liquidity at their determined price levels, as they are not required to contin-
uously post bids and offers, or maintain an orderly market. Since they are
not registered or under any obligations to provide liquidity, these parties
do not receive any special rebates that are made available to the registered
AMM. This party tends to employ alpha models to determine the best price
for the stocks (e.g., theoretical fair value models) and corresponding bids
and offers to take advantage of market prices - they only tend to provide
quotes when it is in their best interest to do so and when there is sufficient
opportunity to achieve a profit. If prices are moving away from them, they
may no longer keep a market quote. As a result, they may only have a quote
on one side of the market, or will quickly close the position via a market
order to avoid potential adverse price movement. These parties expect to
profit via the bid-ask spread (like the tradition AMM participants) as well
as via market rebates and alpha signals. But unlike traditional AMM partic-
ipants, the rebates and alpha signals are a primary P/L opportunity. They
only perform the AMM function when these signals are in their favor,
and they do not have any obligation to continuously provide market quotes.
The opportunistic AMM participants are more likely to net and close their
positions by the end of the day because they do not want to hold any over-
night risk even if they are well hedged. Furthermore, the opportunistic
AMM participants are not willing to hold any inventory of stock in antici-
pation of future order flow. But they will hold an inventory (usually small)
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of stock (either long or short) based on their alpha signal - which is usually
very short-term (before the end of the day). They often close or net their
positions through market orders, and do so especially when they can lock
in a profit. Additionally, some of the opportunistic AMM may continuously
net positions throughout the day so that they keep a very little cash expo-
sure. These parties also try to profit via rebates, and utilize limit order
models (and other statistical models relying on real-time data) to infer
buying and selling pressure and their preferred prices.

DIRECT MARKET ACCESS
Direct market access (DMA) is a term used in the financial industry
to describe the situation where the trader utilizes the broker’s technology
and infrastructure to connect to the various exchanges, trading venues,
and dark pools. The buy-side trader is responsible to program all algo-
rithmic trading rules on their end when utilizing the broker for direct market
access. Many times, funds combine DMA services with broker algorithms
to have a larger number of execution options at their disposal.

Brokers typically provide DMA to their clients for a reduced commission
rate but do not provide the buy-side trader with any guidance on structuring
the macro or microlevel strategies (limit order strategies and smart order
routing decisions). Investors utilizing DMA are required to specify all
slicing and pricing schemes, as well as selection of appropriate pools of
liquidity on their own.

In the DMA arena, the buy-side investor is responsible for specifying:

(1) Macro Trading Rules. Specify the optimal trading time and/or trading
rate of the order.

(2) Micro Adaptation Tactics. Rules to determine when to accelerate or
decelerate trading, based on market prices, volume levels, realized
costs, etc.

(3) Limit Order Strategies. How should the order be sliced into small
pieces and traded in the market, e.g., market or limit order, and if
limit order, at what price and how many shares,

(4) Smart Order Routing Logic. Where should orders be posted, displayed
or dark, how long should we wait before revising the price or chang-
ing destination, how to best take advantage of rebates.

The investor then takes advantage of the brokers’ DMA connectivity to
route the orders and child order based on these sets of rules. Under
DMA, the investor is in a way renting the brokers advanced trading plat-
forms, exchange connectivity, and market gateways.
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Many broker networks have been developed with the high frequency trader
in mind and are well equipped to handle large amounts of data, messages,
and volume. The infrastructure is built on a flexible ultralow latency FIX
platform. Some of these brokers also provide smart order routing access,
as they are often better prepared to monitor and evaluate level II data, order
book queues, and trading flows and executions by venue in real-time.

Advantages:

n Lower Commissions. Brokers are paid a fee by the fund to compensa-
tion them for their infrastructure and connectivity to exchanges,
trading venues, dark pools, etc. This fee is usually lower than the stan-
dard commission fee and the fund does not receive any additional
benefit from the broker such as order management services, risk man-
agement controls, etc.

n Anonymity. Orders are entered into the system and managed by the
trader. Brokers do not see or have access to the orders.

n Control. Traders have full control over the order. Traders determine
the venues (displayed/dark), order submission rules such as market/
limit prices, share quantities, wait and refresh times, as well as when
to accelerate or decelerate trading based on the investment objective of
the fund and actual market conditions. Information Leakage is mini-
mized since the broker does not receive any information about the or-
der or trading intentions of the investor.

n Access. Access to the markets via the broker technology and infra-
structure. This includes co-location, low latency connections, etc.

n Perfectly Customized Strategies. Since the investor defines the exact
algorithmic trading rules they are positioned to ensure the strategy is
exactly consistent with their underlying investment and alpha expecta-
tions. Funds rarely (if ever at all!) provide brokers with proprietary
alpha estimates.

Disadvantages:

n Increased Work. Funds need to continuously test and evaluate their al-
gorithms, write and rewrite codes, develop their own limit order
models and smart order routers.

n Lack of Economies of Scale. Most funds do not have access to the
large number and breadth of orders entered by all customers. There-
fore, they do not have as large of a data sample to test new and alter-
native algorithms. Brokers can invest substantial resources in an
algorithmic undertaking since the investment cost will be recovered
over numerous investors. Funds incur the entire development cost
themselves.
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n Research Requirements. Need to continuously perform their own
research to determine what works well and under what types of market
conditions.

n Locked-Into Existing Systems. Difficult and time consuming to rewrite
code and redefine algorithms rules for all the potential market condi-
tions and whenever there is a structural change in the market or to a
trading venue. However, many traders who utilize DMA also have the
option of utilizing broker suites of algorithms (for a higher commis-
sion rate). The main exception in this case is the HFT.

n Monitor. Need to continuously monitor market conditions, order book,
prices, etc., which could be extremely data intensive.
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Chapter3
Transaction Costs

Transaction cost analysis (TCA) has regained a new-found interest in the
financial community because of the proliferation of algorithmic trading.
Portfolio managers and traders are using TCA to evaluate the performance
of brokers and their algorithms. Furthermore, TCA is used by portfolio man-
agers to improve performance as part of their stock selection and portfolio
construction process.

Currently, there are many investors who utilize TCA to select their trading
algorithms and make informed trading decisions. Those investors who are
not yet utilizing TCA as a decision-making tool are missing valuable
opportunities to improve portfolio performance and increase returns.

TCA has evolved significantly over the last several years, though it is still
commonly conceptualized as a vague and unstructured concept. The accom-
panying literature and research remain muddled due to misrepresentation by
many brokers, vendors, and industry participants. We set out to shed new
light below.

To fully assist investors’ transaction cost performance, we have developed a
framework that consists of pre-, intra-, and posttrade analysis. Our frame-
work is based on an unbundling scheme where costs are classified by 10
components and categorized by where they occur during implementation.
This scheme is based on the work of Perold (1988) and Wagner and
Edwards (1993), and has been described in the Journal of Trading article,
“The Expanded Implementation Shortfall: Understanding Transaction
Cost Components” by Kissell (2006), and in Optimal Trading Strategies
(2003). Manhavan (2000, 2002) provided a detailed investigation of
financial literature discussing transaction cost components and is considered
by many as the gold standard of TCA literature review.

WHAT ARE TRANSACTION COSTS?
In economics, transaction costs are the fees paid by buyers, but not received
by sellers, and/or the fees paid by sellers, but not received by buyers. In
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finance, transaction costs refer to the premium above the current
market price required to attract additional sellers into the market and the dis-
count below the current market price required to attract additional buyers
into the market. Transaction costs are described by Coarse (1937) in
“The Nature of the Firm” as an unavoidable cost of doing business. He
was subsequently awarded the Nobel Prize for Economics in 1991 for his
leading-edge work.

WHAT IS BEST EXECUTION?
The perception that best execution is an elusive concept has become
severely overplayed in the industry. In reality, “best execution” is a very
simple and direct concept: best execution (as stated in Optimal Trading
Strategies) is the process of determining the strategy that provides the high-
est likelihood of achieving the investment objective of the fund. The strat-
egy consists of managing transaction costs during all phases of the
investment cycle, and determining when it is appropriate to take advantage
of ever-changing market conditions.

Wayne Wagner described best execution in even simpler terms:

It is the process of maximizing the investment idea.

Best execution does not depend on how close the execution price occurs to
an arbitrary benchmark price (such as the open, close, high, low, volume-
weighted average price [VWAP], etc.). Rather, it does depend on the inves-
tor’s ability to make proper trading decisions by incorporating all market
uncertainties and the current market conditions. The goal of best execution
is to ensure that the trading decisions are consistent with the overall invest-
ment objectives of the fund. (See Kissell and Malamut (2007) for a discus-
sion on ensuring consistency between investing and trading consistency.)

To determine if best execution has been met requires performance evalua-
tion to be made based on the “information set” that was available at the
beginning of trading combined with the investment objective of the fund.
If either the information set or the underlying investment objective is not
known or not available it is simply not possible to determine if “best execu-
tion” was achieveddregardless of how close the transaction prices were to
any benchmark price.

WHAT IS THE GOAL OF IMPLEMENTATION?
Implementation is the process of determining suitable appropriate trading
strategies and adaptation tactics that will result in best execution.
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Unfortunately, it is not possible for investors to preevaluate and determine
the best way to execute a position under all possible scenarios, but investors
can develop rules and guidelines to make these tasks quicker, easier, and
more efficient during trading.

In Wayne Wagner’s terminology:

Implementation is the journey to best execution.

UNBUNDLED TRANSACTION COST COMPONENTS
We have identified 10 distinct transaction cost components: commissions,
taxes, fees, rebates, spreads, delay cost, price appreciation, market impact,
timing risk, and opportunity cost. These are described below following
the definitions in Kissell (2003, 2006).

Commission
Commission is payment made to broker-dealers for executing trades and
corresponding services such as order routing and risk management. Com-
missions are commonly expressed on a per share basis (e.g., cents per share)
or based on total transaction value (e.g., some basis point of transaction
value). Commission charges may vary by:

(i) Broker, fund (based on trading volume), or by trading type (cash,
program, algorithms, or direct market access [DMA]).

(ii) Trading difficulty, where easier trades receive a lower rate and the more
difficult trades a higher rate. In the current trading arena, commissions
are highest for cash trading followed by programs, algorithms, and
DMA.

Fees
Fees charged during execution of the order include ticket charges
assessed by floor brokers, exchange fees, clearing and settlement costs,
and Securities and Exchange Commission transaction fees. Very often
brokers bundle these fees into the total commissions charge.

Taxes
Taxes are a levy assessed based on realized earnings. Tax rates will vary by
investment and type of earnings. For example, capital gains, long-term
earnings, dividends, and short-term profits can all be taxed at different
percentages.
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Rebates
The rebate component is a new transaction cost component that is the by-
product of the new market environment (see Chapter 2). Trading venues
charge a usage fee using a straight commission fee structure, a maker-
taker model, or a taker-maker (inverted) model. In a straight commission
model, both parties are charged a fee for usage of the system. In the
maker-taker model the investor who posts liquidity is provided a rebate
and the investor who takes liquidity is charged a fee. In an inverted or
taker-maker model the investor posting liquidity is charged a fee and the
investor who takes liquidity is provided a rebate. In both cases the fee
charged will be higher than the rebate provided to ensure that the trading
venue will earn a profit. Brokers may or may not pass this component
onto their clients. In cases when it does not pass through the component
the broker will pay the fee or collect the rebate for their own profit pool.
The commission rate charged to investors in these cases is likely to already
have these fees and/or rebate embedded in its amount.

Since the fee amount or rebate collected is based on the trading venue and
whether the algorithm posts or takes liquidity, the selection of trading venue
and smart router order logic could be influenced based on the net incremen-
tal cost or rebate for the broker rather than the investor. Many questions
arise (and rightly so) as to whether the broker is really placing orders
correctly based on the needs of their investor or is looking to capture and
profit from the rebates themselves. Analysts are highly encouraged to
inquire about and challenge the logic of rebate fee payment streams gener-
ated by various types of trading algorithms and smart routers to confirm
that the logic is in their best interest.

Spreads
The spread is the difference between best offer (ask) and best bid price. It is
intended to compensate market-makers for the risks associated with
acquiring and holding an inventory while waiting to offset the position in
the market. This cost component is also intended to compensate for the
risk potential of adverse selection or transactions with an informed investor
(i.e., acquirement of toxic order flow). Spreads represent the round-trip cost
of transacting for small orders (e.g., 100 share lots) but do not accurately
represent the round-trip cost of transacting blocks (e.g., 10,000þ shares).

Delay Cost
Delay cost represents the loss in investment value between the time the
managers make the investment decision and the time the order is released
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to the market. Managers who buy rising stocks and sell falling stocks will
incur a delay cost. Delay cost could occur for many reasons.

First, delay cost may arise because traders hesitate in releasing the orders to
the market. Second, cost may occur due to uncertainty surrounding who are
the most “capable” brokers for the particular order or trade list. Some brokers
are more capable at transacting certain names or more capable in certain mar-
ket conditions. Third, traders may decide to hold off the transaction because
they believe better prices may occur. However, if the market moves away,
e.g., an adverse momentum, then the delay cost can be quite large. Fourth,
traders may unintentionally convey information to the market about their
trading intentions and order size (information leakage). Fifth, overnight price
change movement may occur. For example, stock price often changes from
the close to the open. Investors cannot participate in this price change, so the
difference results in a sunk cost or savings depending on whether the change
is favorable. Investors who are properly managing all phases of the invest-
ment cycle can minimize (if not avoid completely) all delay cost components
except for the overnight price movement.

Price Appreciation
Price appreciation represents how the stock price would evolve in a market
without any uncertainty (natural price movement). Price appreciation is also
referred to as price trend, drift, momentum, or alpha. It represents the cost
(savings) associated with buying stock in a rising (falling) market or selling
(buying) stock in a falling (rising) market. Many bond pricing models as-
sume that the value of the bond will appreciate based on the bond’s interest
rate and time to maturity.

Market Impact
Market impact represents the movement in the price of the stock caused by a
trade or order. It is one of the costlier transaction cost components and always
results in adverse price movement and a drag on performance. Market impact
will occur due to the liquidity demand (temporary) of the investor and the in-
formation content (permanent) of the trade. The liquidity demand cost
component refers to the situation where the investors wishing to buy or
sell stock in the market have insufficient counterparties to complete the order.
In these situations, investors will have to provide premiums above the current
price for buy orders or discount their price for sell orders to attract additional
counterparties to complete the transaction. The information content of the
trade consists of inadvertently providing the market with signals to indicate
the investors’ buy/sell intentions, which in turn cause market participants
to interpret the stock as under- or overvalued, respectively.
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Mathematically, market impact is the difference between the price trajectory
of the stock with the order and what the price trajectory would have been
had the order not been released to the market. Unfortunately, we are not
able to simultaneously observe both price trajectories and measure market
impact with any exactness. As a result, market impact has been described
as the “Heisenberg uncertainty principal of trading.” This concept is further
described and illustrated in the chapter Market Impact Models.

Timing Risk
Timing risk refers to the uncertainty surrounding the estimated transaction
cost. It consists of three components: price volatility, liquidity risk, and
parameter estimation error. Price volatility causes the underlying stock price
to be either higher or lower than estimated due to market movement and
noise. Liquidity risk drives market impact cost due to fluctuations in the
number of counterparties in the market. Liquidity risk is dependent upon
volumes, intraday trading patterns, as well as the aggregate buying and
selling pressure of all market participants. Estimation error is the standard
error (uncertainty) surrounding the market impact parameters.

Opportunity Cost
Opportunity cost is a measure of the forgone profit or avoided loss of not being
able to transact the entire order (e.g., having unexecuted shares at the end of the
trading period). The main reasons why opportunity cost may occur are adverse
pricemovement and insufficient liquidity. First, if managers buy stocks that are
rising, theymay cancel the unexecuted shares of the order as the price becomes
too expensive, resulting in a missed profit. Second, if managers cannot com-
plete the order due to insufficient market liquidity (e.g., lack of counterparty
participation) the manager would again miss out on a profit opportunity for
those unexecuted shares due to favorable price movement.

TRANSACTION COST CLASSIFICATION
Transaction costs can be classified into investment related, trading related,
and opportunity cost components.

Investment-Related Costs are the costs that arise during the investment de-
cision phase of the investment cycle. They occur from the time of the invest-
ment decision to the time the order is released to the market. These costs
often arise due to lack of communication between the portfolio manager
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and trader in decisions of proper implementation objective (strategy), or due
to a delay in selecting the appropriate broker or algorithm. The longer it takes
for the manager and trader to resolve these issues, the higher the potential for
adverse price movement and higher investment cost. Traders often spend
valuable time investigating how trade lists should be implemented and
what broker or trading venue to use. The easiest way to reduce
investment-related transaction cost is to use proper pretrade analysis, alter-
native strategies evaluations, and algorithm selections so that managers
and traders can work closely together to determine the strategy most consis-
tent with the investment objective of the fund.

Trading-Related Costs. Trading-related transaction costs comprise the
largest subset of transaction costs. They consist of all costs that occur
during actual implementation of the order. While these costs cannot be
eliminated, they can be properly managed based on the needs of the fund.
The largest trading-related transaction costs are market impact and timing
risk. However, these two components are conflicting terms and are often
referred to as the “trader’s dilemma,” because traders need to balance this
tradeoff based on the risk appetite of the firm. Market impact is highest
utilizing an aggressive trading strategy and lowest utilizing a passive
strategy. Timing risk, on the other hand, is highest with a passive strategy
and lowest with an aggressive strategy. Market impact and timing risk are
two conflicting terms.

Opportunity Cost. Opportunity cost, as stated above, represents the fore-
gone profit or loss resulting from not being able to fully execute the order
within the allotted period. It is measured as the number of unexecuted shares
multiplied by the price change during which the order was in the market. Op-
portunity cost will arise either because the trader was unwilling to transact
shares at the existing market prices (e.g., prices were too high) or because
there was insufficient market liquidity (e.g., not enough sellers for a buy or-
der or buyers for a sell order) or both. The best way to reduce opportunity
cost is for managers and traders to work together to determine the number
of shares that can be absorbed by the market within the manager’s specified
price range. If it is predetermined that the market is not able to absorb all
shares of the order within the specified prices, the manager can modify the
order to a size that can be easily transacted at their price points (Table 3.1
and Figs. 3.1, 3.2).
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TRANSACTION COST CATEGORIZATION
Financial transaction costs are comprised of fixed and variable components
and are either visible or hidden (nontransparent).

Fixed cost components are those costs that are not dependent upon the
implementation strategy and cannot be managed or reduced during
implementation. Variable cost components, on the other hand, vary during
implementation of the investment decision and are a function of the under-
lying implementation strategy. Variable cost components make up most of
the total transaction costs. Money managers, traders, and brokers can add
considerable value to the implementation process simply by controlling
these variable components in a manner consistent with the overall invest-
ment objective of the fund.

Visible or transparent costs are those costs whose fee structure is known in
advance. For example, visible costs may be stated as a percentage of traded
value, as a $/share cost applied to total volume traded, or even as some per-
centage of realized trading profit. Visible cost components are primarily
attributable to commissions, fees, spreads, and taxes. Hidden or nontranspar-
ent transaction costs are those costs whose fee structure is unknown. For
example, the exact cost for a large block order will not be known until after
the transaction has been completed (if executed via agency) or until after the
bid has been requested (if a principal bid). The cost structures for these hid-
den components are typically estimated using statistical models. For example,
market impact costs are often estimated via nonlinear regression estimation.

Nontransparent transaction costs comprise the greatest portion of total trans-
action cost and provide the greatest potential for performance enhancement.
Traders and/or algorithms need to be especially conscious of these compo-
nents to add value to the implementation process. If they are not properly
controlled they can cause superior investment opportunities to become
only marginally profitable and/or profitable opportunities to turn bad.

TRANSACTION COST ANALYSIS
TCA is the investor’s tool to achieve best execution. It consists of pretrade,
intraday, and posttrade analysis.

Pretrade analysis occurs prior to the commencement of trading. It consists
of forecasting price appreciation, market impact, and timing risk for the
specified strategy, evaluating alternative strategies and algorithms, and
selecting the strategy or algorithm that is most consistent with the overall
investment objective of the fund.
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Intraday analysis is intended to ensure that the revised execution strategies will
continuously be aligned with the high-level trading decisions. It consists of
specifying how these strategies are to adapt to the endlessly changing market
conditions (e.g., price movement and liquidity conditions). The only certainty
in trading is that actual conditions will differ from expected. Participants
need to understand when it is appropriate to change their strategy and take
advantage of these changing market conditions.

Both pretrade and intraday analyses consist of making and revising execution stra-
tegies (in real time) to ensure trading goals are consistent with overall investment
objectives. Best execution is determined more on decisions made pretrade than
posttrade. Most analysts are very good Monday morning quarterbacks. However,
investors need a quality coachwho canmake and execute decisions under pressure
with unknown conditions.

Posttrade analysis, on the other hand, does not consist of making any type of
trading decision (either pretrade or intraday). Posttrade analysis is used to deter-
mine whether the pretrade models give accurate and reasonable expectations,
and whether pretrade and intraday decisions are consistent with the overall in-
vestment objectives of the fund. In other words, it is the report card of execution
performance.

Posttrade analysis consists of two parts: measuring costs and evaluating perfor-
mance. All too often, however, there is confusion regarding the meaning of
these parts. For example, comparison of the execution price to the VWAP price
over the day is not a trading costdit is a proxy for performance. Comparison to
the day’s closing price is not a costdit is a proxy for tracking error. And com-
parison of execution price to the opening price on the day or the market price at
time of order entry is a cost to the fund and does not give insight into the per-
formance of the trade.

Posttrade analysis needs to provide a measurement of cost, and evaluation of
performance at the broker, trader, and algorithm level. When appropriate, the
posttrade report should provide universe comparisons, categorization break-
downs (large/small orders, adverse/favorable price movement, high/low vola-
tility, market up/down, etc.), and trend analysis.

Measuring/Forecasting
A cost measure is an “ex-post” or “after-the-fact” measure, and is determined
via a statistical model. It is always a single value and can be either positive
(less favorable) or negative (savings). It is computed directly from price data.
A cost forecast, on the other hand, occurs “ex-ante” or “prior to trading.” It
is an estimated value comprised of a distribution with an expected mean
(cost) and standard deviation (timing risk).
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The average or mean trading cost component is comprised of market impact
and price appreciation. The forecasted market impact estimate will always
be positive and indicate less favorable transaction prices. The price appre-
ciation component, on the other hand, could be zero (e.g., no expectation
of price movement), positive, indicating adverse price movement and less
favorable expected transaction prices, or negative, indicating favorable price
momentum and better transaction prices. The trading cost standard error
term is comprised of price volatility, liquidity risk, and parameter estimation
error from the market impact model.

Cost vs. Profit and Loss
There is not much consistency in the industry regarding the terminology or
sign to use when measuring and forecasting costs. Many participants state
cost as a positive value, while others state cost as a negative value. For
example, some participants refer to a positive cost of þ30 bp as underper-
formance and a negative cost of �30 bp as outperformance (savings).
Others treat this metric in the opposite way with the þ30 bp indicating
better transaction prices and �30 bp indicating worse transaction prices.

To avoid potential confusion, our “cost” and “profit and loss” (PnL) termi-
nology throughout the text will be as follows:

A “cost” metric will always use a positive value to indicate underperform-
ance and a negative value to indicate better performance. For example, a
cost of 30 bp indicates less favorable execution than the benchmark
and �30 bp indicates better performance than the benchmark.

A “PnL” metric will always use a negative value to indicate underperform-
ance and a positive value to indicate better performance. For example, a PnL
of e5 bp indicates less favorable execution than the benchmark and a PnL
of þ5 bp indicates better performance compared to the benchmark.

IMPLEMENTATION SHORTFALL
Implementation shortfall (IS) is a measure that represents the total cost of
executing the investment idea. It was introduced by Perold (1988) and is
calculated as the difference between the paper return of a portfolio where
all shares are assumed to have transacted at the manager’s decision price
and the actual return of the portfolio using actual transaction prices and
shares executed. It is often described as the missed profiting opportunity
as well as the friction associated with executing the trade. Many industry
participants refer to IS as slippage or simply portfolio cost.
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Mathematically, IS is written as:

IS ¼ Paper Return� Actual Return

Paper Return is the difference between the ending portfolio value and its
starting value evaluated at the manager’s decision price. This is:

Paper Return ¼ S$Pn � S$Pd

Here S represents the total number of shares to trade, Pd is the manager’s
decision price, and Pn is the price at the end period N. S$Pd represents the
starting portfolio value and S$Pn represents the ending portfolio value.
Notice that the formulation of the paper return does not include any transac-
tion costs such as commissions, ticket charges, etc. The paper return is meant
to capture the full potential of the manager’s stock-picking ability. For
example, suppose a manager decides to purchase 5000 shares of a stock
trading at $10 and by the end of the day the stock is trading at $11. The value
of the portfolio at the time of the investment decision was $50,000 and the
value of the portfolio at the end of the day was $55,000. Therefore, the paper
return of this investment idea is $5000.

Actual Portfolio Return is the difference between the actual ending portfo-
lio value and the value that was required to acquire the portfolio minus all
fees corresponding to the transaction. Mathematically, this is:

Actual Portfolio Return ¼
�
X

sj
�

$Pn �
X

sjpj � fees

where

ðP sjÞ represents the total number of shares in the portfolio
ðP sjÞ$Pn is the ending portfolio value
P

sjpj is the price paid to acquire the portfolio

and fees represent the fixed fees required to facilitate the trade such as
commission, taxes, clearing and settlement charges, ticket charges, re-
bates, etc. sj and pj represent the shares and price corresponding to the
jth transaction.

For example, suppose a manager decides to purchase 5000 shares of stock
trading at $10. However, due to market impact, price appreciation, etc., the
average transaction price of the order was $10.50, indicating that the man-
ager invested $52,500 into the portfolio. If the stock price at the end of the
day is $11 the portfolio value is then worth $55,000. If the total fees were
$100, then the actual portfolio return is $55,000 e $52,500 e 100 ¼ $2400.
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IS is then computed as the difference between paper return and portfolio re-
turn as follows:

IS ¼ S$Pn � S$Pd

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Paper Return

�
�
X

sj
�

$Pn �
X

sjpj � fees
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Actual Portfolio Return

In our example above, the IS for the order is:

IS ¼ $5; 000� $2; 400 ¼ $2; 600

The “IS” metric is a very important portfolio manager and trader decision-
making metric. It is used to select stock-picking ability, measure trading
costs, and as we show below measure broker and algorithmic performance.

IS can be described in terms of the following three examples:

(i) Complete execution
(ii) Opportunity cost (Andre Perold)
(iii) Expanded IS (Wayne Wagner)

Complete Execution
Complete execution refers to the situation where the entire order is trans-
acted in the market, that is,

P

sj ¼ S. Suppose a manager decides to pur-
chase Sshares of stock that is currently trading at Pdand at the end of the
trading horizon the price is Pn. Then, IS is computed following the above
calculation as follows:

IS ¼ ðS $Pn � S $PdÞ �
��
X

sj
�

$Pn �
X

sjpj � fees
�

Since
P

sj ¼ S this equation reduces to:

IS ¼
X

sjpj � S$Pd þ fees

This could also be written in terms of the average execution price Pavg for
all shares as follows:

IS ¼ S$Pavg � S$Pd þ fees ¼ S$ðPavg �PdÞ þ fees

since
P

sjpj ¼ S$Pavg. Notice that when all shares are executed the IS
measure does not depend on the future stock price Pn at all.

Example: A manager decided to purchase 5000 shares when the stock was at
$10. All 5000 shares were transacted in the market, but at an average transac-
tion price of $10.50. If the commission fee was $100, then IS of the order is:

IS ¼ 5000$ð$10:50� $10:00Þ þ 100 ¼ $2; 600
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Opportunity Cost (Andre Perold)
The opportunity cost example refers to a situation where the manager does not
transact the entire order. This could be due to prices becoming too expensive or
simply a lack of market liquidity. Either way, it is essential that we account for
all unexecuted shares in the IS calculation. This process is as follows:

First, compute the paper portfolio return:

Paper Return ¼ S$PN � S$Pd

Next, compute the actual portfolio return for those shares that were executed:

Actual Return ¼
�
X

sj
�

Pn �
X

sjpj þ fees

Then, the IS is written as:

IS ¼ ðS $PN � S $PdÞ �
��
X

sj
�

Pn �
X

sjpj þ fees
�

Let us now expand on this formulation. Share quantity Scan be rewritten in
terms of executed shares

P

sjand unexecuted shares ðS�P sjÞ as follows:

S ¼
X

sj
|fflffl{zfflffl}

Executed

þ
�

S�
X

sj
�

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Unexecuted

If we substitute the share quantity expression above into the previous IS
formulation we have:

IS ¼
�
X

sj þ
�

S�
X

sj
�

$PN �
X

sj þ
�

S�
X

sj
�

$Pd

�

�
��
X

sj
�

Pn �
X

sjpj þ fees
�

This equation can be written as:

IS ¼
X

sjpj �
X

sjPd

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Execution Cost

þ
�

S�
X

sj
�

$ðPn � PdÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Opportunity Cost

þ fees

This is the IS formulation of Perold (1988) and differentiates between
execution cost and opportunity cost. The execution cost component repre-
sents the cost that is incurred in the market during trading. Opportunity
cost represents the missed profiting opportunity by not being able to transact
all shares at the decision price.

Example: A manager decides to purchase 5000 shares of a stock at $10 but
the manager is only able to execute 4000 shares at an average price of
$10.50. The stock price at the end of trading is $11.00. And the commission
dollar cost is $80, which is reasonable since only 4000 shares are traded in
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this example compared to 5000 shares in the above example. Then IS,
including opportunity cost, is:

IS ¼
�
X

sjpj �
X

sjPd

�

þ
�

S�
X

sj
�

$ðPn �PdÞ þ fees

It is important to note that in a situation where there are unexecuted shares,
then the IS formulation does depend upon the ending period stock price Pn,
but in a situation where all shares do execute, then IS formulation does not
depend upon the ending period price Pn.

Furthermore, in situations where we have the average execution price of the
order, IS further simplifies to:

IS ¼
X

sj$ðPavg �PdÞ þ
�

S�
X

sj
�

$ðPn �PdÞ þ fees

In our example we have:

IS ¼ 4000$ð$10:50� $10:00Þ þ 1000$ð$11:00� $10:00Þ þ 80

¼ $2000þ $1000þ $80 ¼ $3080

The breakdown of costs following Perold is: execution cost ¼ $2000, op-
portunity cost ¼ $1000, and fixed fee ¼ $80.

Expanded Implementation Shortfall (Wayne
Wagner)
Our third example shows how to decompose IS based on where the costs
occur in the investment cycle. It starts with opportunity cost, and further
segments the cost into a delay component, which represents the missed op-
portunity of being unable to release the order into the market at the time of
the investment decision. “Expanded IS” is based on the work of Wayne
Wagner and is often described as Wagner’s IS. This measurement provides
managers with valuable insight into “who” is responsible for which costs. It
helps us understand whether the incremental cost was due to a delay in
releasing the order to the market or due to inferior performance by the trader
or by the algorithm. Knowing who is responsible for cost will help investors
improve the process of lowering transaction costs in the future. Wagner’s
expanded IS categorizes cost into delay, trading, and opportunity-related
cost. Perold’s original formulation did not separate delay and trading-
related costs when they occurred during the implementation phase. Wagn-
er’s formulation of IS is what makes it possible to measure performance
across traders, brokers, and algorithms.
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The derivation of the expanded IS is as follows.

First, define two time horizons: investment and trading. The investment ho-
rizon is the time from the investment decision td to the beginning of trading
t0. The trading horizon is the time from the beginning of trading t0 to the end
of trading tn. The corresponding prices at these time intervals are Pd, which
is the decision price, P0, which is the price at the beginning of trading also
known as the arrival price, andPn, which is the price at the end of trading. All
prices are taken as the midpoint of the bideask spread if during market
hours, or the last traded price or official close if after hours.

Next, rewrite the price change over these two intervals as follows:

ðPn �PdÞ ¼ ðPn �P0Þ þ ðP0 �PdÞ
Now substitute this price into Perold’s IS:

IS ¼
�
X

sjpj �
X

sjPd

�

þ
�

S�
X

sj
�

$ðPn �PdÞ þ fees

This is:

IS ¼
�
X

sjpj �
X

sjPd

�

þ
�

S�
X

sj
�

$ððPn �P0Þþ ðP0 �PdÞÞ þ fees

This expression can then be written based on our investment and trading
horizons and is known as the expanded IS or Wagner’s IS. This is as
follows:

Expanded IS ¼ SðP0 � PdÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Delay Related

þ
X

sjpj �
�
X

sj
�

P0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Trading Related

þ
�

S�
X

sj
�

ðPn � P0Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Opportunity Cost

þ fees

This could also be written in terms of the average transaction price Pavg as
follows:

Expanded IS ¼ SðP0 � PdÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Delay Related

þ
�
X

sj
�

ðPavg � P0Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Trading Related

þ
�

S�
X

sj
�

ðPn � P0Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Opportunity Cost

þ fees

This is the expanded IS metric proposed by Wayne Wagner that makes a
distinction between the investment and trading horizons. It was first identi-
fied in Wagner (1975) and later explained in Wagner (1991) and Wagner
and Edwards (1993). The delay-related component has also been referred
to as the investment-related cost. The delay cost component could be caused
by the portfolio manager, buy-side trader, or broker-dealer. For example,
see Almgren and Chriss (2000), Kissell and Glantz (2003), or Rakhlin
and Sofianos (2006).
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Example: A manager decides to purchase 5000 shares of a stock at $10. By
the time the order is finally released to the market the stock price has
increased to $10.25. If the manager is only able to execute 4000 shares at
an average price of $10.50 and the stock price at the end of trading is
$11.00, what is the expanded IS cost by components? Assume total
commission cost is $80.

The calculation of the expanded IS is:

Expanded IS ¼ 5000$ð$10:25� $10:00Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Delay Related

þ 4000$ð$10:50� $10:25Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Trading Related

þ 1000$ð$11:00� $10:25Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Opportunity Cost

þ $80 ¼ $3080

The delay-related component is: $1250.

The trading-related component is: $1000.

The opportunity cost component is: $750.

Fixed fee amount is: $80.

Total expanded IS ¼ $3080.

Notice that Wagner’s expanded IS cost is the same value as Perold’s IS.
However, the opportunity cost in this example is $750 compared to
$1000 previously. The reason for this difference is that the expanded IS
measures opportunity cost from the time the order was released to the mar-
ket as opposed to the time of the manager’s decision. The delay-related cost
component above can be further segmented into a trading-related delay cost
and an opportunity-related delay cost. This is shown as follows:

Delay Cost ¼ S $ ðP0 �PdÞ ¼
�

S�
X

sj
�

$ðP0 � PdÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Opportunity Related Delay

þ
�
X

sj
�

ðP0 � PdÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Trading Related Delay

Analysts may wish to include all unexecuted shares in the opportunity cost
component as a full measure of missed profitability.

It is important to point out that in many cases the analysts will not have the
exact decision price of the manager since portfolio managers tend to keep
their decision prices and reasons for the investment to themselves. Howev-
er, analysts know the time the order was released to the market. Hence, the
expanded IS would follow our formulation above where we only analyze
costs during market activity, that is, from t0 to tn. This is:
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Market Activity IS ¼

�
X

sj
�

ðPavg � P0Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Trading Related

þ
�

S�
X

sj
�

ðPn � P0Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Opportunity Cost

þ fees

IMPLEMENTATION SHORTFALL FORMULATION
The different formulations of implementation discussed above are:

IS ¼ S$ðPavg �PdÞ þ fees

Perold IS ¼
X

sj$ðPavg �PdÞ þ
�

S�
X

sj
�

$ðPn �PdÞ þ fees

Wagner IS ¼ SðP0 �PdÞ þ
�
X

sj
�

ðPavg �P0Þ þ
�

S�
X

sj
�

ðPn �P0Þ þ fees

Mkt Act: IS ¼
�
X

sj
�

ðPavg �P0Þ þ
�

S�
X

sj
�

ðPn �P0Þ þ fees

Trading Cost/Arrival Cost
The trading cost component is measured as the difference between the
average execution price and the price of the stock at the time the order
was entered into the market (arrival price). It is the most important metric
to evaluate broker, venue, trader, or algorithmic performance, because it
quantifies the cost that is directly attributable to trading and these specific
parties. It follows directly from the trading-related cost component from
the expanded IS. The investment-related and opportunity cost components
are more attributable to investment managers than to the trading party.

The trading cost or arrival cost component is:

Arrival Cost$ ¼
X

sjpj �
�
X

sj
�

P0

S; sj > 0 for buys

S; sj < 0 for sells

In basis points this expression is:

Arrival Costbp ¼
P

sjpj � ðP sjÞP0

ðP sjÞP0
$104bp

In general, arrival costs can be simplified as follows:

Arrival Costbp ¼ Side$
Pavg � P0

P0
$104bp
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where

Side ¼
�

1 if Buy

�1 if Sell

EVALUATING PERFORMANCE
In this section we describe various techniques to evaluate performance (note:
we will use the PnL terminology). These methods can be used to evaluate and
compare trade quality for a single stock or basket of trades, as well as perfor-
mance across traders, brokers, or algorithms. It can also serve as the basis for
universe comparisons. In the following section we provide nonparametric sta-
tistical techniques that are being used to compare algorithmic performance.

Techniques that will be discussed in this section include: market- or index-
adjusted cost, benchmark comparisons, various VWAPs, participation-
weighted price (PWP), relative performance measure (RPM), and z-score
statistical measures.

Trading Price Performance
Trading price performance or simply trading PnL is identical to the trading
cost component above and is measured as the difference between the
average execution price and the price of the stock at the time the order
was entered into the market (arrival price). A positive value indicates
more favorable transaction prices and a negative value indicates less favor-
able transaction prices. Trading PnL is a measure of the cost during trading
and reports whether the investor did better or worse than the arrival price.
For example, a trading PnL of �10 bp indicates the fund underperformed
the arrival price benchmark by 10 bp. The formulation for trading PnL mul-
tiplies the arrival cost calculation above by e1. This is:

Trading PnLbp ¼ � 1$Side$
Pavg � P0

P0
$104bp

Benchmark Price Performance
Benchmark price performance measures are the simplest of the TCA perfor-
mance evaluation techniques. These are intended to compare specific mea-
sures such as net difference and tracking error, or to distinguish between
temporary and permanent impact. Some of the more commonly used bench-
mark prices include:

n Opendas a proxy for arrival price.
n Closedinsight into end-of-day tracking error and is more commonly

used by index funds that use the closing price in valuation of the fund.
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n Next day’s opendas a way to distinguish between temporary and
permanent market impact.

n Next day close or future day closedalso to distinguish between
temporary and permanent impact.

The benchmark PnL calculation is:

Trading PnLbp ¼ � 1$Side$
Pavg � PB

PB
$104bp

where PB ¼ benchmark price.

VWAP Benchmark
The VWAP benchmark is used as a proxy for fair market price. It helps in-
vestors determine if their execution prices were in line and consistent with
fair market prices.

The calculation is:

VWAP PnLbp ¼ � 1$Side$
Pavg � VWAP

VWAP
$104bp

where VWAP is the VWAP over the trading period. A positive value indi-
cates better performance and a negative value indicates underperformance.

Interval VWAP comparison serves as a goodmeasure of execution quality and
does a nice job of accounting for actual market conditions, trading activity, and
marketmovement. The intervalVWAP, however, does suffer from three issues.
First, the larger the order, the closer the results will be to the VWAP price,
because the order price will become the VWAP price. Second, actual perfor-
mance can become skewed if there are large block trades that occur at extreme
prices (highs or lows) in crossing venues, especially in cases where investors
have limitedopportunity toparticipatewith those trades.Third, theVWAPmea-
sure does not allow easy comparison across stocks or across the same stock on
different days. For example, it is not possible to determine ifmissingVWAPby
3bp inone stock is better performance thanmissingVWAPby10 bp in another
stock. If the first stock has very low volatility and the second stock has very
high volatility, missing VWAP by 10 bp in the second name may in fact be
better performance than missing VWAP by 3 bp in the first name.

There are three different VWAP performance metrics used: full day,
interval, and VWAP to end of day.
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Full-day VWAP: Used for investors who traded over the entire trading day
from open to close. There is currently no “official” VWAP price on the day
but many different providers such as Bloomberg, Reuters, etc., offer their
proprietary VWAP price calculation. These vendors determine exactly
what trades will be included in the VWAP calculations but they may not
use all the market trades. For example, some providers may filter trades
that were delayed or negotiated because they do not feel these prices are
indicative of what all market participants had fair access to.

Interval VWAP: Used as a proxy for the fair market price during the time
the investor was in the market trading. The interval VWAP is a specific
VWAP price for the investor over their specific trading horizon and needs
to be computed from Treasury International Capital (TIC) data. This is in
comparison to a full-day VWAP price that is published by many vendors.

VWAP to end of day: Used to evaluate those orders that were completed
before the end of the day. In these cases, the broker or trader made a
conscious decision to finish the trade before the end of the day decision
to finish. This VWAP to end of day provides some insight into what the
fair market price was, including even after the order was completed. It helps
determine if the decision to finish the order early was appropriate. This is a
very useful metric to evaluate over time to determine if the trader or broker
is skilled at market timing. But it does require enough observations and a
large TIC data set.

It is worth noting that some B/Ds and vendors refer to the VWAP compar-
ison as a cost rather than a gain/loss performance metric. In these situations,
a positive value indicates a higher cost (thus underperformance) and a nega-
tive value indicates a lower cost (thus better performance). Unfortunately,
there is no standard in the financial community on how to represent trading
costs and trading performance.

Participation-Weighted Price Benchmark
PWP is a variation of the VWAP analysis. It is intended to provide a com-
parison of the average execution price to the likely realized price had they
participated with a specified percentage of volume during the duration of
the order.

For example, if the PWP benchmark is a 20% percentage of volume (POV)
rate and the investor transacted 100,000 shares in the market starting at 10
a.m., the PWP 20% benchmark price is computed as the VWAP of the first
500,000 shares that traded in the market starting at 10 a.m. (the arrival time
of the order). It is easy to see that if the investor transacted at a 20% POV
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rate their order would have been completed once 500,000 shares traded in
the market, since 0.20 * 500,000 ¼ 100,000 shares. The number of shares in
a PWP analysis is equal to the number of shares traded divided by the spec-
ified POV rate.

The PWP PnL metric is computed as follows:

PWP Shares ¼ Shares Traded

POV Rate

PWP Price ¼ volume weighted price of the first PWP shars starting at the
arrival time t0

PWP PnLbp ¼ � 1$
Pavg � PWP Price

PWP Price
$104bp

The PWP benchmark also has some inherent limitations like the VWAP
metric. First, while PWP does provide insight into fair and reasonable prices
during a specified time horizon it does not allow easy comparison across
stocks or across days due to different stock price volatility and daily price
movement. Furthermore, investors could potentially manipulate the PWP
by trading at a more aggressive rate to push the price up for buy orders or
down for sell orders, and give the market the impression that they still
have more to trade. Since temporary impact does not dissipate instanta-
neously, the PWP price computed over a slightly longer horizon could
remain artificially high (buy orders) or artificially low (sell orders) due to
temporary impact cost. Participants may hold prices at these artificially
higher or lower levels waiting for the nonexistent orders to arrive. The result
is a PWP price that is more advantageous to the investor than what would
have occurred in the market if the order had actually traded over that horizon.

Relative Performance Measure
The RPM is a percentile ranking of trading activity. It provides an indica-
tion of the percentage of total activity that the investor outperformed in the
market. For a buy order, it represents the percentage of market activity that
transacted at a higher price and for a sell order it represents the percentage
of market activity that transacted at a lower price. The RPM is modeled after
the percentile ranking used in standardized academic tests and provides a
descriptive statistic that is more consistent and robust than other measures.

The RPM was originally presented in Optimal Trading Strategies (2003) and
Kissell (2008) and was based on a volume and trade metric. That original
formulation, however, had at times small sample size and large trade percent-
age limitations bias. For example, the original formulation considered all
the investor’s trades at the average transaction price as outperformance.
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Therefore in situations where the investor transacted a large size at a single
price, all the shares were considered as outperformance and the result would
overstate the actual performance. Boni (2009) further elaborated on this point
in her article “Grading Broker Algorithms” (Journal of Trading, Fall 2009),
and provides some important insight and improvements.

To help address these limitations, we revised the RPM formulation as
follows:

The RPM is computed based on trading volume as follows:

RPM ¼ 1
2
$ðð% of volume traded at a price less favorable or equal to PavgÞ

þ ð1�% of volume traded at a price less favorable or equal to PavgÞÞ
This metric can also be formulated for buy and sell orders as follows:

RPMBuy ¼ 1
2
$

�

Total Volumeþ Volume at Price > PAvg � Volume at Price < PAvg

Total Volume

�

RPMSell ¼ 1
2
$

�

Total Volumeþ Volume at Price < PAvg � Volume at Price > PAvg

Total Volume

�

This formulation of RPM is now the average of the percentage of volume
that traded at our execution price or better and 1 minus the average of
the percentage of volume that traded at our execution price or worse.
Thus, in effect, it treats half of the investor’s orders as better performance
and half the order as worse performance. As stated, the original formulation
treated all the investor’s shares as better performance and inflated the
measure.

The RPM is in many effects a preferred measure to the VWAP metric
because it can be used to compare performance across stocks, days, and
volatility conditions. And it is not influenced to the same extent as
VWAP when large blocks trade at extreme prices.

The RPM will converge to 50% as the investor accounts for all market vol-
ume in the stock on the day, like how the VWAP converges to the average
execution price for large orders.

Brokers achieving fair and reasonable prices on behalf of their investors
should achieve an RPM score around 50%. RPM scores consistently greater
than 50% are an indication of superior performance and scores consistently
less than 50% are an indication of inferior performance. The RPM measure
can also be mapped to a qualitative score, for example:
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Pretrade Benchmark
The pretrade benchmark is used to evaluate trading performance from the
perspective of what was expected to have occurred. Investors compute
the difference between actual and estimated to determine whether perfor-
mance was reasonable based on how close they came to the expectation.
Actual results that are much better than estimated could be an indication
of skilled and quality execution, whereas actual results that are much worse
than estimated could be an indication of inferior execution quality.

The difference between actual and estimated, however, could also be due to
actual market conditions during trading that are beyond the control of the
traderdsuch as sudden price momentum, or increased or decreased
liquidity conditions (these are addressed below using the z-score and
market-adjusted cost analysis).

The pretrade performance benchmark is computed as follows:

PreTrade Difference ¼ Estimated Arrival Cost � Actual Arrival Cost

A positive value indicates better performance and a negative value indicates
worse performance.

Since actual market conditions could have a huge influence on actual costs,
some investors have started analyzing the pretrade difference by computing
the estimated market impact cost for the exact market conditionsdan ex-
post market impact metric. While this type of measure gives reasonable
insight in times of higher and lower volumes, on its own it does not give
an adequate adjustment for price trend. Thus investors also factor out price
trend via a market-adjusted performance measure.

Index-Adjusted Performance Metric
A market-adjusted or index-adjusted performance measure is intended to
account for price movement in the stock due to the market, sector, or
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industry movement. This is computed using the stock’s sensitivity to the
underlying index and the actual movement of that index as a proxy for
the natural price appreciation of the stock (e.g., how the stock price would
have changed if the order was not released to the market).

First, compute the index movement over the time trading horizon:

Index Costbp ¼ Index VWAP� Index Arrival Cost

Index Arrival Cost
$104bp

Index arrival is the value of the index at the time the order was released to
the market. Index VWAP is the VWAP for the index over the trading ho-
rizon. What is the index volume-weighted price over a period? Luckily,
there are many efficient trading frontiers that serve as proxies for various
underlying indexes such as the market (e.g., SPY), or sectors, etc., and
thus provide easy availability to data to compute volume-weighted average
index prices.

If the investor’s trade schedule sequence followed a different weighting
scheme than volume weighting, such as front- or back-loaded weightings,
it would be prudent for investors to compute the index cost in each period.
In times where the index VWAP is not available, it can be approximated as
Index VWAP ¼ 1=2$Rm, where Rm is the total return in basis points of the
underlying index over the period. The 1/2 is the adjustment factor to account
for continuous trading. This is shown in Journal of Trading (2008): “A Prac-
tical Framework Transaction Cost Analysis.”

The index-adjusted cost is then:

Index Adjusted Costbp ¼ Arrival Costbp � bbKI$Index Costbp
bbKI is stock k’s sensitivity to the index. It is determined via linear regression
in the same manner we calculate beta to the market index. Notice that all we
have done is subtract out the movement in the stock price that we would have
expected to occur based only on the index movement. The index cost is not
adjusted for the side of the trade.

Z-Score Evaluation Metric
The Z-score evaluation metric provides a risk-adjusted performance score by
normalizing the difference between estimated and actual by the timing risk
of the execution. This provides a normalized score that can be compared
across difference stocks and across days. (A z-score measure is also used
to measure the accuracy of pretrade models and to determine if these models
are providing reasonable insight to potential outcomes cost.)
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A simple statistical z-score is calculated as follows:

Z ¼ Actual� Expected

Standard Deviation

For TCA, we compute the normalized transaction cost as follows:

Z ¼ PreTrade Cost Estimate� Arrival Cost

PreTrade Timing Risk

Notice that this representation is opposite the statistical z-score measure (z¼
(x e u)/sigma). In our representation a positive z-score implies performance
better than the estimate and a negative value implies performance worse than
the estimate. Dividing by the timing risk of the trade normalizes for overall
uncertainty due to price volatility and liquidity risk. These ensure that the
sign of our performance metrics is consistentdpositive indicates better per-
formance and negative indicates lower quality performance.

If the pretrade estimates are accurate, then the z-score statistic should be a
random variable with mean zero and variance equal to one, that is, Zwð0; 1Þ.
There are various statistical tests that can be used to test this joint hypothesis.

There are several points worth mentioning with regard to trading cost com-
parison. First, the test needs to be carried out for various order sizes (e.g.,
large, small, and midsize orders). It is possible for a model to overestimate
costs for large orders and underestimate costs for small orders (or vice versa)
and still result in Zwð0; 1Þ on average. Second, the test needs to be carried
out for various strategies. Investors need to have a degree of confidence
regarding the accuracy of cost estimates for all the broker strategies. Third,
it is essential that the pretrade cost estimate is based on the number of shares
traded and not the full order. Otherwise, the pretrade cost estimate will likely
overstate the cost of the trade and the broker being measured will consistency
outperform the benchmark giving the appearance of superior performance
and broker ability. In times where the order is not completely executed, the
pretrade cost estimates need to be adjusted to reflect the actual number of
shares traded. Finally, analysts need to evaluate a large enough sample size
to achieve statistical confidence surrounding the results as well as conduct
cross-sectional analysis to uncover any potential bias based on size, volatility,
market capitalization, and market movement (e.g., up days and down days).

It is also important to note that many investors are using their own pretrade
estimates when computing the z-score measure. There is a widespread resis-
tance to using a broker’s derived pretrade estimate to evaluate their own per-
formance. As one manager stated, everyone looks great when we compare
their performance to their cost estimate. But things start to fall into place
when we use our own pretrade estimate. Pretrade cost comparison needs
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to be performed using a standard pretrade model to avoid any bias that may
occur with using the provider’s own performance evaluation model.

Market Cost-Adjusted Z-Score
It is possible to compute a z-score for the market-adjusted cost as a means of
normalizing performance and comparing across various sizes, strategies, and
time periods, like how it is used with the trading cost metric. But in this case,
the denominator of the z-score is not the timing risk of the trade since timing
risk accounts in part for the uncertainty in total price movement (adjusted for
the trade schedule). The divisor in this case must be the tracking error of the
stock to the underlying index (adjusted for the trading strategy). Here the
tracking error is identical to the standard deviation of the regression equation.

Here we subtract only estimated market impact cost (not total estimated
cost) for the market-adjusted cost since we already adjusted for price appre-
ciation using the stocks underlying beta and index as its proxy:

Market Adjusted ZScore ¼ PreTrade Estimate�Market Adjusted Cost

Adjusted Tracking Error to the Index

Adaptation Tactic
Investors also need to evaluate any adaptation decisions employed during
trading to determine if traders correctly specify these tactics and to ensure
consistency with the investment objectives. For example, often investors
instruct brokers to spread the trades over the course of the day to minimize
market impact cost, but if favorable trading opportunities exist, then trading
should accelerate to take advantage of the opportunity. Additionally, some
instructions are to execute over a predefined period, such as the next 2 h
with some freedom. In these situations, brokers can finish earlier if favorable
conditions exist, or extend the trading period if they believe the better oppor-
tunities will occur later in the day.

The main goal of evaluating adaptation tactics is to determine if the adap-
tation decision (e.g., deviation from initial strategy) was appropriate given
the actual market conditions (prices and liquidity). That is, how good of a
job does the broker do in anticipating intraday trading patterns and favor-
able trading opportunities?

The easiest way to evaluate adaptation performance is to perform the
interval-VWAP and interval-RPM analyses (see above) over the time spec-
ified by the investor (e.g., a full day or for the specified 2-h period) instead
of the trading horizon of the trade. This will allow us to determine if the
broker realized better prices by deviating from the initially prescribed
schedule and will help distinguish between skill and luck.
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As with all statistical analyses, it is important to have a statistically signif-
icant sample size and also perform cross-sectional studies where data points
are grouped by size, side, volatility, market capitalization, and market
movement (e.g., up days and down days) to determine if there is any bias
for certain conditions or trading characteristics (e.g., one broker or algo-
rithm performs better for high volatility stocks, another broker or algorithm
performs better in favorable trending markets, etc.).

COMPARING ALGORITHMS
One of the biggest obstacles in comparing algorithmic performance is that
each algorithm trades in a different manner, under a different set of market
conditions. For example, a VWAP algorithm trades in a passive manner
with lower cost and more risk compared to an arrival price algorithm, which
will trade in a more aggressive manner and have higher cost but lower risk.
Which is better?

Consider the results from two different algorithms. Algorithm A has lower
costs on average than algorithm B. Can we conclude that A is better than B?
What if the average costs from A and B are the same but the standard de-
viation is lower for A than for B. Can we now conclude that A is better than
B? Finally, what if A has a lower average cost and a lower standard devi-
ation? Can we finally conclude that A is better than B? The answer might
surprise some readers. In all cases the answer is no. There is simply not
enough information to conclude that A is a better performing algorithm
than B even when it has a lower cost and lower standard deviation. We
need to determine if this is a statistical difference or due to chance.

One of the most fundamental goals of any statistical analysis is to determine
if the differences in results are “true” differences in process or if they are
likely only due to chance. To assist with the evaluation of algorithms we
provide the following definition:

Performance from two algorithms is equivalent if the trading
results are likely to have come from the same distribution of
costs.

There are two ways we can go about comparing algorithms: paired obser-
vations and independent samples.

A paired observation approach is a controlled experiment where orders are
split into equal pairs and executed using different algorithms over the same
time periods. This is appropriate for algorithms that use static trading pa-
rameters such as VWAP and POV. These are strategies and will not
compete with one another during trading, and are likely to use the exact
same strategy throughout the day. For example, trading 1,000,000 shares
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using a single broker’s VWAP algorithm will have the same execution strat-
egy as trading two 500,000 share orders with two different VWAP algo-
rithms (provided that the algorithms are equivalent). Additionally, trading
1,000,000 shares with one broker’s POV algorithm (e.g., POV ¼ 20%)
will have the same execution strategy as using two different brokers’ POV
algorithms at one-half the execution rate (e.g., POV ¼ 10% each). A paired
observation approach ensures that identical orders are executed under iden-
tical market conditions. Analysts can also choose between the arrival cost
and VWAP benchmark as the performance metric. Our preference for the
paired sample tests is to use the VWAP.

An independent sampling approach is used to compare orders that are
executed over different periods of time using different algorithms. This
test is appropriate for algorithms such as IS that manages the tradeoff be-
tween cost and risk and employs dynamic adaptation tactics. In these cases,
we do not want to split an order and trade in algorithms that adapt trading to
real-time market conditions because we do not want these algorithms to
compete with one another. For example, if a 1,000,000 shares order is split
into two orders of 500,000 shares and given to two different brokers, these
algorithms will compute expected impact cost based on their 500,000 shares
not on the aggregate imbalance of 1,000,000 shares. This is likely to lead to
less than favorable prices and higher than expected costs since the algorithms
will likely transact at an inappropriately faster or slower rate. The algorithm
may confuse the incremental market impact from the sister order with short-
term price trend or increased volatility, and react in a manner inappropriate
for the fund, resulting in higher prices. Our preference is to use the arrival
cost as our performance metric in the independent sample tests.

A paired observation approach can use any of the static algorithms
providing that the underlying trade schedule is the same across brokers
and algorithms, e.g., VWAP and POV. An independent sampling approach
needs to be used when we are evaluating performance of dynamic
algorithms that adapt to changing market conditions.

Nonparametric Tests
We provide the outline of six nonparametric tests that can be used to deter-
mine if two algorithms are equivalent. They are based on paired samples
(sign test, Wilcoxon signed rank), independent samples (median test,
ManneWhitney U test), and evaluation of the underlying data distributions
(chi-square and KolmogoroveSmirnov goodness of fit). Readers who are
interested in a more thorough description of these tests as well as further
theory are referred to Agresti (2002), De Groot (1986), Green (2000),
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and Mittelhammer et al. (2000). Additionally, Journal of Trading’s Statisti-
cal Methods to Compare Algorithmic Performance (2007) gives additional
background and examples for the ManneWhitney U test and the Wilcoxon
signed rank test. We follow the mathematical approach presented in the
Journal of Trading article below.

Each of these approaches consists of: (1) devising a hypothesis, (2) the
calculation process to compute the test statistic, and (3) comparing that
test statistic to a critical value.

Paired Samples
For paired samples the analysis will split the order into two equal pieces and
trade each in a different algorithm over the exact same time horizon. It is
important in these tests to use only algorithms that do not compete with
one another such as VWAP, time-weighted average price, or POV. A static
trade schedule algorithm could also be used in these tests since the strategy
is predefined and will not compete with one another. The comparison metric
used in these tests can be either arrival cost or VWAP performance.

Sign Test
The sign test is used to test the difference in sample medians. If there is a
statistical difference between medians of the two paired samples we
conclude that the algorithms are not equivalent.

Hypothesis:

H0 : Medians are the same ðp ¼ 0:5Þ
H1 : Medians are different ðps0:5Þ

Calculation process:

1. Record all paired observations:
(Xi, Yi) ¼ paired performance observations for algorithms X and Y
Let Zi ¼ Xi e Yi
k ¼ number of times Zi > 0
n ¼ total number of pairs of observations

2. T is the probability that z � k using the binomial distribution.

T ¼
X
n

j¼ k

�

n

j

�

$pj$ð1� pjÞn�j ¼
X
n

j¼ k

�

n

j

�

$ð0:5Þj$ð0:5Þn�j

For large samples the normal distribution can be used in place of the
binomial distribution.
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Evaluation to critical value:

a is the user-specified confidence level, e.g., a ¼ 0:05
Reject the null hypothesis if T � a or T � ð1 �aÞ

Wilcoxon Signed Rank Test
This Wilcoxon signed rank test determines whether there is a difference in
the average ranks of the two algorithms using paired samples. This test can
also be described as determining if the median difference between paired
observations is zero. The testing approach is as follows:

Hypothesis:

H0 : Sample mean ranks are the same
H1 : Sample mean ranks are different

Calculation process:

1. Let (Ai, Bi) be the paired performance results.
Let Di ¼ Ai � Bi, where Di > 0 indicates algorithm A had better
performance and Di < 0 indicates algorithm B had better
performance.

2. Sort the data based on the absolute values of differences
jD1j; jD2j;/jDnj in ascending order.

3. Assign a rank ri to each observation. The smallest absolute value differ-
ence is assigned a rank of 1, the second smallest absolute value difference
is assigned a rank of 2, ., and the largest absolute value difference is
assigned a rank of n.

4. Assign a signed rank to each observation based on the rank and the orig-
inal difference of the pair. That is:

Si ¼
�þri if Ai � Bi > 0

�ri if Ai � Bi < 0

�

5. Let Tn be the sum of all ranks with a positive difference. This can be
determined using an indicator function Wi defined as follows:

Wi ¼
�

1 if Si > 0

0 if Si < 0

�

Tn ¼
X
n

i¼ 1

ri$Wi$
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Since the rank ri takes on each value in the range ri ¼ 1, 2,., n (once and
only once), Tn can also be written in terms of its observation as follows:

Tn ¼
X
n

i¼ 1

i$Wi

o If the results are from the same distribution, then the differences Di

should be symmetric about the point q ¼ 0/ PðDi � 0Þ ¼ 1=2
and PðDi � 0Þ ¼ 1=2.

o If there is some bias in performance, then differences Di will be sym-
metric about the biased value q ¼ q�/ PðDi � q�Þ ¼ 1=2 and
PðDi � q�Þ ¼ 1=2.

o Most statistical texts describe the Wilcoxon signed ranks using a null
hypothesis of q� ¼ 0 and alternative hypothesis of q�s0. This pa-
per customizes the hypothesis test for algorithmic comparison.

6. If performance across algorithms is equivalent, then there is a 50%
chance that Di > 0 and a 50% chance that Di < 0. The expected value
and variance of our indicator function W is as follows:

EðWÞ ¼ 1=2$1þ 1=2$0 ¼ 1=2

VðWÞ ¼ E
	

X2

� ½EðWÞ�2 ¼ 1=2� ð1=2Þ2 ¼ 1=4

7. This allows us to easily compute the expected value and variance of our
summary statistic Tn. This is as follows:

EðTnÞ ¼
X
n

i¼ 1

i$EðWiÞ ¼ 1
2
$
X
n

i¼ 1

i ¼ nðnþ 1Þ
4

VðTnÞ ¼
X
n

i¼ 1

i2$VðWiÞ ¼ 1
4
$
X
n

i¼ 1

i2 ¼ nðnþ 1Þð2nþ 1Þ
24

Because n/N, Tn converges to a normal distribution and we can use the
standard normal distribution to determine our critical value:

Zn ¼ Tn � EðTnÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

VðTnÞ
p

Comparison to critical value:

n Reject the null hypothesis if jZnj > Ca=2, where Ca=2 is the critical value
on the standard normal curve corresponding to the 1� a confidence level.

n For a 95% confidence test (e.g., a ¼ 0:05) we reject the null hypothesis
if jZnj > 1:96.
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n Above we are only testing if the distributions are different (therefore we
use a two-tail test).

n This hypothesis can also be constructed to determine if A has better (or
worse) performance than B based on whether Di > 0 or Di < 0 and us-
ing a one-tail test and corresponding critical values.

INDEPENDENT SAMPLES
The independent samples can be computed over different periods, used for
different stocks. The total number of observations from each algorithm can
also differ. As stated above, it is extremely important for the analyst to
randomly assign trades to the different algorithms and ensure similar trading
characteristics (side, size, volatility, market cap) and market conditions over
the trading period. Below are two nonparametric tests that can be used to
compare algorithms using independent samples. It is best to compare like
algorithms in these tests such as arrival price, IS, aggressive-in-the-
money, etc. Since the orders are not split across the algorithms, they can
be dynamic and will not compete with one another.

ManneWhitney U Test
The ManneWhitney U test compares whether there is any difference in per-
formance from two different algorithms. It is best to compare “like” algo-
rithms in this case (e.g., IS to IS, ultra-aggressive to ultra-aggressive,
etc.). The arrival cost metric is the performance metric in this test.

Hypothesis:

H0 : Same performance
H1 : Different performance

Calculation process:

1. Let m represent the number of orders transacted by broker A.
Let n represent the number of orders transacted by broker B.
Total number of orders ¼ m þ n.

2. Combine the samples into one group.
3. Order the combined data group from smallest to largest cost.

For example, the smallest value receives a rank of 1, the second smallest
value receives a rank of 2, ., the largest value receives a rank of m þ n.
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Identify each observation with an “A” if the observation was from algorithm
A and “B” if it was from algorithm B.

4. The test statistic T is the sum of the ranks for all the observations from
algorithm A.

This can be computed using help from an indicator function defined as
follows:

Wi ¼
�

1 if the observation was from algorithm A

0 if the observation was from algorithm B

�

Then, the sum of the ranks can be easily computed as follows:

T ¼
X
n

i¼ 1

ri$Wi

n If the underlying algorithms are identical the actual results from each
sample will be evenly distributed throughout the combined grouping.
If one algorithm provides better performance results, its sample should
be concentrated around the lower cost rankings.

n In the situation where the null hypothesis is true the expected rank and
variance of T are:

EðTÞ ¼ m$ðmþ nþ 1Þ
2

VðTÞ ¼ mn$ðmþ nþ 1Þ
12

As with the Wilcoxon signed rank test, it can be shown that because
n;m/N the distribution of T converges to a normal distribution. This prop-
erty allows us to test the hypothesis that there is no difference between bro-
ker VWAP algorithms using the standard normal distribution with the
following test statistic:

Z ¼ T � EðTÞ
ffiffiffiffiffiffiffiffiffiffiffi

VðTÞp

Comparison to critical value:

n Reject the null hypothesis H0 if jZj > Ca=2.
n Ca=2 is the critical value on the standard normal curve corresponding to

the 1� a confidence level.
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n For example, for a 95% confidence test (e.g., a ¼ 0:05) we reject the
null hypothesis if jZj > 1:96. Notice here that we are only testing if
the distributions are different (therefore a two-tail test).

n The hypothesis can also be constructed to determine if A has better (or
worse) performance than B by specifying a one-tail test. This requires
different critical values.

Analysts need to categorize results based on price trends, capitalization,
side, etc. to determine if one set of algorithms performs better or worse
for certain market conditions or situations. Often, a grouping of results
may not uncover any difference.

An extension of the ManneWhitney U test used to compare multiple algo-
rithms simultaneously is the KruskaleWallis one-way analysis of variance
test. This test is beyond the scope of this reference book, but readers inter-
ested in the concept can reference Mansfield (1994) or Newmark (1988).

MEDIAN TEST
The median test is used to determine if the medians of two or more indepen-
dent samples are equal. If the medians of the two samples are statistically
different from one another, then the algorithms are not equivalent. This
test is as follows:

Hypothesis:

H0 : Same medians
H1 : Different medians

Calculation process:

1. Use arrival cost as the performance measure.
2. Choose two algorithms that are similar (e.g., arrival, IS, etc.). This exper-

iment can be repeated to compare different algorithms.
3. Use a large enough number of orders and data points in each algorithm so

that each has a representative sample size. Make sure that the orders
traded in each algorithm are similar: size, volatility, market cap, buy/
sell, and in similar market conditions.

4. Let X ¼ set of observations from algorithm A.

Let Y ¼ set of observations from algorithm B.
5. Determine the overall median across all the data points.
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6. For each sample count the number of outcomes that are less than or equal
to the median and the number of outcomes that are greater than the me-
dian. Use the table below to tally these results.

M
M

7. Compute the expected frequency for each cell:

efij ¼ total observatoins in row i þ total observatoins in column j
overall total number of observations

8. Compute the test statistic c2:

c2 ¼
X ðnumber of observations� ef Þ2

ef

c2 ¼ ða� ef11Þ2
ef11

þ ðb� ef12Þ2
ef12

þ ðc� ef21Þ2
ef21

þ ðd � ef22Þ2
ef22

David M. Lane (Rice University) provided an alternative calculation of the
test statistic c2that makes a correction for continuity. This calculation is:

c2 ¼
n
�

jad � bcj � n

2

�2

ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ
Comparison to critical value:

n df ¼ ðnumber of columns � 1Þ,ðnumber of rows � 1Þ ¼ 1.
n Reject the null if c2 � c2�ðdf ¼ 1; a ¼ 0.05Þ ¼ 3.84.

DISTRIBUTION ANALYSIS
Distribution analyses compares the entire set of performance data by deter-
mining if the set of outcomes could have been generated from the same
data-generating process. These tests could be based on either pair samples
or independent samples. Analysts need to categorize results based on price
trends, capitalization, side, etc., to determine if one set of algorithms per-
forms better or worse for certain market conditions or situations. Often, a
grouping of results may not uncover any difference in process.
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CHI-SQUARE GOODNESS OF FIT
The chi-square goodness of fit test is used to determine whether two
data series could have been generated from the same underlying distribu-
tions. It utilizes the probability distribution function. If it is found that the
observations could not have been generated from the same underlying
distribution, then we conclude that the algorithms are different.

Hypothesis:

H0 : Data generated from same distribution
H1 : Data generated from different distributions

Calculation process:

1. Use the arrival cost as the performance measure.
2. Choose two algorithms that are similar (e.g., arrival, IS, etc.).
3. Trade a large enough number of orders in each algorithm to generate a

representative sample size. Ensure that the orders traded in each algo-
rithm have similar characteristics such as side, size, volatility, trade
time, and market cap, and were traded in similar market conditions.

4. Let X ¼ set of results from algorithm A.
Let Y ¼ set of results from algorithm B.

5. Categorize the data into groups of buckets.

Combine the data into one series. Determine the bucket categories based on
the combined data. We suggest using from 10 to 20 categories based on
number of total observations. The breakpoints for the category buckets
can be determined based on the standard deviation of the combined data
or based on a percentile ranking of the combined data. For example, if using
the standard deviation method, use categories such as <e3s, e3 to �2.5s,
., 2.5 to 3s, 3sþ. If using the percentile ranking method, order all data
points from lowest to highest and compute the cumulative frequency from
1/n to 100% (where n is the combined number of data points). Select break
points based on the values that would occur at 10%, 20%, ., 100% if 10
groups, or 5%, 10%, ., 95%, 100% if 20 buckets. Count the number of
data observations from each algorithm that fall into these bucket categories.

6. Compute the test statistic c2:

c2 ¼
X
m

k¼ 1

ðobserved sample X in bucket k� observed sample Y in bucket kÞ2
observed sample Y in bucket k
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where m ¼ number of buckets.

Comparison to critical value:

n Reject the null if c2 � c2�ðdf ¼ m �1; a ¼ 0.05Þ .

KOLMOGOROVeSMIRNOV GOODNESS OF FIT
The KolmogoroveSmirnov goodness of fit test is used to determine
whether two data series of algorithmic performance could have been gener-
ated from the same underlying distributions. It is based on the cumulative
distribution function. If it is determined that the data samples could not
have been generated from the generating process, then we conclude that
the algorithms are different.

Hypothesis:

H0 : Data generated from same distribution
H1 : Data generated from different distributions

Calculation process:

1. Use the arrival cost as the performance measure.
2. Choose two algorithms that are similar (e.g., arrival, IS, etc.).
3. Trade a large enough number of orders in each algorithm to generate a

representative sample size. Ensure that the orders traded in each algo-
rithm have similar characteristics such as side, size, volatility, trade
time, and market cap, and were traded in similar market conditions.

4. Let X ¼ set of results from algorithm Adn observations in total.
5. Let Y ¼ set of results from algorithm Bdm observations in total.
6. Construct empirical frequency distributions for each data series by

ranking the data from smallest to lowest. Let FAðxÞ be the cumulative
probability for data series A at value x and let FBðxÞ be the cumulative
probability for data series B at value x. That is, these functions represent
the number of data observations in each respective data series that are less
than or equal to the value x.

7. Compute the maximum difference between these cumulative functions
over all values. That is:

Dn ¼
� mn

mþ n

�1=2

max
x
jFAðxÞ�FBðxÞj

Mathematicians will often write this expression as:

Dn ¼
� mn

mþ n

�1=2

sup
x
jFAðxÞ�FBðxÞj
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Comparison to critical value:

n The critical value is based on the Kolmogrov distribution.
n The critical value for a ¼ 0.05 is 0.04301.
n Reject the null if Dn � 0:04301.

EXPERIMENTAL DESIGN
There are five concerns that need to be addressed when performing the sta-
tistical analyses described above. These are: (1) proper statistical tests, (2)
small sample size, (3) data ties, (4) categorization of data, and (5) balanced
sample set.

Proper Statistical Tests
In statistical testing, the preferred process is a controlled experiment so that
the analyst can observe the outcomes from two separate processes under
identical market conditions (e.g., Wilcoxon signed rank test). While this
is an appropriate technique for static strategies such as VWAP and POV al-
gorithms, it is not an appropriate technique for those algorithms with dy-
namic trading rates and/or those that employ real-time adaptation tactics.
Employing a controlled experiment for dynamic algorithms will likely
cause the algorithms to compete with one another and will lead to decreased
performance. For dynamic algorithms (e.g., IS and ultra-aggressive algo-
rithms) it is recommended that investors utilize the two-sample nonpair
approach and the WilcoxoneManneWhitney ranks test.

In theory, it is appropriate to compare algorithms with static strategies (e.g.,
VWAP and POV) with the WilcoxoneManneWhitney ranks test. Howev-
er, doing so causes increased difficulty with regard to robust categorization
and balanced data requirements. It is recommended that algorithms with
static parameters be compared via the Wilcoxon ranks test approach.

Small Sample Size
In each of these statistical techniques it is important to have a sufficiently
large enough data sample to use the normal approximation for hypothesis
testing. In cases where the sample sizes are small (e.g., n and/or m
small) the normal distribution may not be a reasonable approximation
methodology and analysts are advised to consult statistical tables for the
exact distributions of Tn and T . We recommend using at least n > 100
and m > 100 for statistically significant results.
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Data Ties
It is assumed above that the results are samples from a continuous distribu-
tion (i.e., statistically there will never be identical outcomes). Due to finite
precision limitations, analysts may come across duplicate results, inhibiting
a unique ranking scheme. In these duplicate situations, it is recommended
that the data point be included in the analysis twice. In the case that algo-
rithm “A” is the better result for one data point and algorithm “B” is the
better result for the second data point, a unique ranking scheme will exist.
If the tail areas of the results are relatively the same, this approach should
not affect the results. If the tail areas are different, this may be a good
indication that the data are too unreliable and further analysis is required.
Analysts with strong statistical training may choose alternative ranking
schemes in times of identical results.

Proper Categorization
When analyzing algorithmic performance, it is important to categorize
trades by side (buy/sell/short), size, market conditions (such as up and
down days), company capitalization (large, mid, and small cap), etc. Cate-
gorization allows analysts to determine if one algorithm works statistically
better or worse in certain situations. For example, if VWAP algorithm “A”
makes market bets by front loading executions and VWAP algorithm “B”
makes market bets by back loading, “A” will outperform “B” for buys on
days with a positive drift and for sells on days with a negative drift.
Conversely, algorithm “B” will outperform “A” for buys on days with a
negative drift and for sells on days with a positive drift. A statistical test
that combines executions from a large array of market conditions may
miss this difference in performance, especially if we are comparing
averages or medians. It is essential that analysts perform robust statistical
hypothesis testing for all performance testing techniques.

Balanced Data Sets
It is imperative that analysts utilize a random selection process for submit-
ting orders to algorithms and ensure that the data sets are balanced across
the specified categorization criteria, e.g., size, side, capitalization, market
movement, etc. This basically states that the percentage breakdown in the
categorization groups described above will be similar. Otherwise, the statis-
tical results may fall victim to Simpson’s paradox (e.g., dangers that arise
from drawing conclusions from aggregate samples).
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FINAL NOTE ON POSTTRADE ANALYSIS
Consider the possibility that performance is equivalent across all families of
algorithms. For example, there is no difference across VWAP algorithms,
IS algorithms, ultra-aggressive algorithms, etc. Subsequently, two important
issues arise. First, can brokers still add value to the trading process? Second,
is there any need for third party posttrade services? The answer to both
these questions is yes.

Brokers can still add value to the process by providing appropriate pretrade
analysis to ensure proper selection of algorithms and algorithmic parame-
ters. Furthermore, brokers can partner with investors to customize algo-
rithms to ensure consistency across the investment and trading decisions.
For example, see Kissell and Malamut (2006) and Engle and Ferstenberg
(2006). Most importantly, however, is that broker competition propels inno-
vation and advancement that continue to benefit investors.

Third-party consultants also serve as an essential service to the industry.
Not only can they be used by the buy side to outsource numerical analysis,
but more importantly these consultants have access to a larger universe of
trades for various investment styles and algorithms, both robust and
balanced, and are thus positioned to provide proper insight into performance
and trends. Comparatively, brokers typically only have access to trades us-
ing their algorithms and investors only have access to their trades. Access
aside, the statistical testing procedure of these consultants cannot remain
a black box: transparency is crucial for the industry to extract value from
their service. TCA remains an essential ingredient to achieve best execution.
When administered properly, improved stock selection and reduced costs
have proven to boost portfolio performance. As such, advancement of
TCA models is an essential catalyst to further develop the algorithmic
trading and market efficiency space.
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Chapter4
Market Impact Models

INTRODUCTION
This chapter provides an overview of market impact models with an
emphasis on the “Almgren and Chriss” (AC) and “I-Star” models. The
AC model, introduced by Robert Almgren and Neil Chriss (1997), is a
path-dependent approach that estimates costs for an entire order based on
the sequence of traders. This is referred to as a bottom-up approach because
the cost for the entire order is determined from the actual sequence of trades.

The I-Star model, introduced by Robert Kissell and Roberto Malamut
(1998), is a top-down cost allocation approach. First, we calculate the
cost of the entire order, and then allocate to trade periods based on the actual
trade schedule (trade trajectory). The preferred I-Star formulation is a power
function incorporating imbalance (size), volatility, liquidity, and intraday
trading patterns.

Alternative market impact modeling approaches have also appeared in aca-
demic literature. For example, Wagner (1991), Kissell and Glantz (2003),
Chan and Lakonishok (1997), Keim and Madhavan (1997), Barra (1997),
Bertismas and Lo (1998), Breen, Hodrick and Korajczyk (2002), Lillo,
Farmer and Mantegna (2003), and Gatheral (2010, 2012).

DEFINITION
Market impact is the change in price caused by a trade or order. It is one of
the costlier transaction cost components and always causes adverse price
movement. Market impact is often the main reason managers lag their peers.
Market impact costs will occur for two reasons: liquidity needs and urgency
demands (temporary), and information content (permanent).

Temporary impact represents the liquidity cost component and is due to the
urgency needs of the investor. This is the price premium buyers need to pro-
vide the market to attract additional sellers and the price discount sellers need
to provide to attract additional buyers. This cost component can be effec-
tively managed during implementation of an investment decision.
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Permanent impact represents the information cost content of the trade. This
quantity causes market participants to adjust their prices to a new perceived
fair value. The rationale is that informed investors typically buy undervalued
stock and sell overvalued stock. As participants observe buy orders their
perception (at least to some extent) is that the stock is undervalued and
they will adjust their offer prices upward. As participants observe sell orders
their perception (again, at least to some extent) is that the stock is overvalued
and they will adjust bid prices downward. It is an unavoidable trading cost.

Mathematically, we define market impact as the difference between the
actual price trajectory after the order is released to the market and the price
trajectory that would have occurred if the order were never released. Regret-
tably, we cannot observe both price trajectories simultaneously and it is not
possible to construct a controlled experiment to measure both trajectories at
the same time. As a result, market impact is often referred to as the Heisen-
berg uncertainty principle of finance.

Example 1: Temporary Market Impact
A trader receives a buy order for 50,000 shares of RLK. Market quotes
show 1000 shares at $50, 2000 shares at $50.25, 3000 shares at $50.50,
and 4000 shares at $50.75. The trader can only execute 1000 shares at
the best available price and another 9000 shares at the higher price for an
average price of $50.50. But this only represents 10,000 shares of the orig-
inal 50,000-share order. To attract additional seller liquidity into the market,
the trader must offer the market an incremental premium above $50.75. The
liquidity and urgency need of this trade causes the trader to incur impact.
Another option available to traders is to wait for additional sellers to arrive
at the current market prices. If this occurs the trader will be able to transact
at a better price, but if prices move higher due to general market movement
while the trader is waiting for sellers to arrive, the price could become even
higher and the cost more expensive. Waiting for additional counterparties to
arrive is always associated with market risk.

Example 2: Permanent Market Impact
A trader receives a buy order for 250,000 shares of RLK currently trading at
$50. However, inadvertently, this information is released to the market
signaling that the stock is undervalued. Thus investors who currently own
stock will be unwilling to sell shares at the undervalued price of $50 and
will adjust their price upward to reflect the new information requiring the
buyer to pay, say, an additional $0.10/share higher or $50.10 total. This
is an example of the information content cost and permanent market impact.
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Graphical Illustrations of Market Impact
This section provides graphical illustrations of market impact from different
perspectives.

Illustration #1: Price Trajectory
Madhavan (2000, 2002) presents a lucid graphical description of a sell order’s
temporary and permanent market impact cost. We use the same technique to
graphically illustrate these concepts by placing a buy order and a sell order.

Fig. 4.1A illustrates market impact for a buy order. Following a $30.00
opening trade, the stock fluctuates between $29.99 and $30.01, the result
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of the bideask bounce. Now, an investor enters the market and submits a
sizable buy order that immediately pushes the price to $30.25. The premium
above current market price serves to attract additional sellers to complete the
entire position. Price reversion immediately follows this transaction, but the
price reverts to $30.05 not the original price of $30.00. Market participants
inferred this trade as information based, due likely to the stock being under-
valued. As a result, participants looking to sell additional shares were no
longer willing to sell shares at $30.00 but would be willing to offer the shares
at $30.05dwhat they perceive to be the new fair value. The investor
incurred $0.25 of total market impact with $0.20 temporary impact (liquidity
needs) and $0.05 permanent impact (information content).

Fig. 4.1B illustrates the same concept but for a sell order. The stock begins
trading at $30.00 and fluctuates between $29.99 and $30.01 due to the bide
ask bounce. An investor with a large order enters the market and immediate
pushes the price down to $29.75. The investor needed to discount the price to
attract additional buyers. After the transaction we once again observe price
reversion but the price only returns to $29.95, not $30.00. Market partici-
pants believe the price was overvalued causing them to reestablish a fair
value price. Total cost to the investor is $0.25 with $0.20 being temporary
(liquidity needs) and $0.05 being permanent (information content).

Illustration #2: SupplyeDemand Equilibrium
We present a second illustration of the market impact concept through tradi-
tional economic supplyedemand curves (Figs. 4.2Ae4.2D). We use these
curves to show the effect of a buy order on the stock price. Fig. 4.2A depicts
a system currently in equilibrium with q* shares transacting at a price of p*.
Fig. 4.2B shows the effect of a new buyer entering the market on the equi-
librium of the system. Assume the new buyer wishes to transact incremental
Dq shares. This results in a shift in the demand curve from D to D0 to reflect
the increased demand q1 ¼ q* þ Dq. It appears that the new equilibrium
price for q1 shares is p1 but this is incorrect. Immediately after the new buyer
enters the market, the group of existing sellers is likely to believe the demand
was driven because the market price was undervalued and they will raise
their selling prices. This results in an upward shift in the supply curve
from S to S0 and causes the price to increase to p2 from p1 (Fig. 4.2C) for
q1 shares. The impact from the incremental demand of Dq is p2 e p*. After
the trade, participants reevaluate the price due to the information content of
the trade. Their belief is likely to be that the incremental demand was due
to the price being undervalued. Sellers will thus increase their asking price
in the presence of the newly discovered information causing buyers to pay
a higher price.
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After Shares Transact, We Face Some UncertaintydWhat
Happens Next?
After the trade the demand curve will shift back to its previous level. But
will the supply curve remain at S0 or will it return to S. Will equilibrium
quantity return to its original preincremental investor level qnew ¼ q* or
will equilibrium quantity decrease qnew ¼ q* due to higher market prices.
This is shown in Fig. 4.2D.

Supply-Demand

q*

p*

D

S

Supply-Demand

Supply-DemandSupply-Demand

q*

p*

D

S

D'

q1=q*+Δq

p1

q*

p*

D

S

D'

S'

q*

p*

D

S

D'

q1q1

S'

p2p2

p3 p1p1 p4

qnew

D''

(A) (B)

(C) (D)

n FIGURE 4.2 SupplyeDemand Equilibrium.

Definition 103



One scenario assumes reduced market volume following the incremental
demand. Since the price increased due to the trade’s information content
(shift in the supply curve from S to S0) fewer buyers are willing to transact
at higher prices matching the original equilibrium quantity q*. For example,
value managers buy stock only if they are within a specified price range
because these prices can generate a higher profit for the manager. Therefore
once the market adjusts its pricing to reflect higher prices, managers will no
longer purchase those shares because they are outside the specified price
range. The result: lower trading volume. The new equilibrium point will
be the intersection of the original demand curve and the new supply curve
S0, in agreement with a new equilibrium price of p4 and a new equilibrium
quantity of qnew. Here we expect a posttrade price increase (p4 > q*) and
a posttrade volume decrease (qnew < q*). A breakdown of the market impact
cost in this scenario is total impact ¼ p2e p* with temporary impact ¼ p2e
p4 and permanent impact ¼ p4 e p*.

In a second scenario the original number of buyers may continue to pur-
chase the same number of shares at even higher prices. For example, index
managers hold certain stocks and quantities in their portfolios regardless of
their market prices because they need to mimic the underlying index. There-
fore after the incremental shares Dq are transacted the number of buyers
returns to pretrade levels. Since they are willing to transact at higher prices
the demand curve returns to a higher level D00. The new equilibrium point is
the point of intersection between S0 and D00. Demand is identical to the pre-
trade level q*, while the price will be p3 (higher than the original equilibrium
level of p* and higher than p4 [from the first scenario] where we assumed
fewer buyers posttrade due to the higher prices). A breakdown of the market
impact cost in this scenario is total impact ¼ p2 e p* with temporary
impact ¼ p2 e p3 and permanent impact ¼ p3 e p*. In both scenarios, the
total impact of the trade is identical except for new posttrade equilibrium
points. This results in computations for permanent and temporary impact
along with different expectations for forward-looking market volumes.

New equilibrium demand level and price uncertainty are major reasons
behind the difficulty distinguishing between temporary and permanent market
impact cost. Regrettably, these are rarely addressed in the financial literature.

The question remains: Does excess market volume lead to more or less vol-
ume in the future? We often find that excess market volume corresponds
with excess volume in the short term. However, the higher volume is gener-
ally attributed to news, for example, earnings, major macroeconomic events
or new announcements, corporate actions, and so on. Higher volume can
also tie to investors implementing substantial orders executed over multiple
days. We have uncovered evidence of volume returning to its original state
as well as volume levels returning to lower levels. No statistical evidence
exists suggesting that levels would remain at a higher state. In rare cases
where volume stood higher than pretrade levels, the reasoning was (1)
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the stock joined an index, (2) merger or acquisition, and (3) new product
introduction. The best explanation we can offer concerning volume-level
expectations following a large trade is that it will depend on investor mix
prior to large trade/order execution and the underlying reason of the order
transaction. Additional research is needed in this area.

Illustration #3: Temporary Impact Decay Function
Temporarymarket impact is short lived in themarket.But exactly how long does
it take for the price tomove from the higher levels to the new equilibrium levels?
This is referred to as temporary impact decay or dissipation of temporary impact.

Fig. 4.3A illustrates an example where the price is $30 but a large buy order
pushes the price to $30.25. After time, this price reverts to a new equilibrium
price of $30.05. But the price does not revert to the new equilibrium price
immediately, it reverts to equilibrium over time.

Fig. 4.3B depicts dissipation of temporary impact for three different decay rates:
fast, medium, and slow. This figure shows that analysts need to understand not
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only the effect of impact but also the speed at which temporary impact decays.
Investors must understand differences in dissipation rate when they structure
trade schedules, otherwise they may pay prices much higher than expected.

Fig. 4.3C illustrates the prices that could occur under the fast, medium, and
slow decay rate under the same sequence of trades. In this example, the start-
ing price is $30.00 and each trade’s market impact is $0.25 with $0.20 tem-
porary and $0.05 permanent. The first trade price for each decay rate is
$30.25. The second trade price is now comprised of the temporary and per-
manent impact for the second trade, plus permanent impact of the first trade,
plus the remaining temporary impact of the first trade. A fast decay rate will
cause investors to incur a lower amount of temporary impact than a slow
decay rate. In the example, the second trade price is $30.30 for the fast decay
rate, $30.38 for the medium decay rate, and $30.45 for the slow decay rate.
The medium decay rate causes the investor to incur $0.08/share more than the
fast decay rate and the medium decay rate causes the investor to incur $0.15/
share more than the fast decay rate because of the amount of temporary
impact still present in the market from the previous trade for each scenario.
The spacing between these trades was just long enough for the temporary
impact to dissipate fully for the fast decay function but not nearly enough
for the medium or slow decay function, thus the investor will incur the
remaining residual temporary impact from these trades. The third trade price
is equal to the permanent and temporary impact from the third trade, plus the
permanent impact from the first trade plus any remaining temporary impact
from the first trade, plus the permanent impact of the second trade plus any
remaining temporary impact of the second trade. Under the fast decay
schedule, the third trade price is $30.35, which is comprised of permanent
impact from all three trades ($0.05/share each or $0.15/share aggregated)
and temporary impact from the third trade only ($0.20/share) since the tem-
porary impact from the preceding two trades has already been fully dissipated
in the market. Under the medium decay rate the third trade price is $30.46,
which is comprised of permanent impact from all three trades (0.05/share
eachdpermanent impact is a cumulative effect) plus $0.033/share of remain-
ing temporary impact from the first trade, plus $0.081/share of remaining
temporary impact from the second trade, plus $0.20/share of temporary
impact from the third trade. Under the slow decay rate the third trade price
is $30.61, which is comprised of permanent impact from all three trades
(0.05/share eachdpermanent impact is a cumulative effect) plus $0.109/
share of remaining temporary impact from the first trade, plus $0.148/share
of remaining temporary impact from the second trade, plus $0.20/share of
temporary impact from the third trade. We see that the average execution
price is $30.30 for the fast decay rate, $30.37 for the medium decay rate,
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and $30.44 for the slow decay rate. Investors must understand the temporary
impact function’s decay rate to avoid the cumulative effect of temporary
impact. Prices under the different decay schedules are shown in Table 4.1.

Fig. 4.3D depicts how temporary decay can be determined from an exponen-
tial decay function. First, it is important to note that the required properties of
a decay function include: decreasing over time; always nonnegative; ap-
proaches zero asymptotically otherwise the decay function may include
some permanent effect; and, most important, provides an accurate represen-
tation of reality. Too often we find quasi-quants selecting decay functions
that possess only some of these required properties but when tested with
real data the function does not provide an accurate description of the system.
In many of these cases, investors are better off using intuition than depend-
ing on insight from a faulty model.

A useful decay function that exhibits these properties and proves an accurate
representation of reality is the exponential decay function. This function
provides the percentage of temporary impact remaining over time
(compared to t ¼ 0) and is written as dðtÞ ¼ e�g$t. Here, g > 0 is the
decay parameter that determines the rate of decay. Larger values of g will
decay at a faster rate than smaller values. From this expression the percentage
of temporary impact that has already decayed at time t is 1 � dðtÞ.
An appealing property of the exponential decay function is that it
decreases at a constant rate. In other words, the percentage reduction
from one period to the next is the same. For example, with a parameter
of g ¼ 0:5, the percentage of temporary impact remaining after the first
period is dð1Þ ¼ e�0:5$1 ¼ 0:6065 and after two periods the percentage
of temporary impact remaining is dð21Þ ¼ e�0:5$2 ¼ 0:3679 and can
also be written as dð2Þ ¼ dð2Þ2. The amount of temporary impact that
has decayed after one period in this case is 1 � e�0:5$1 ¼ 0:3935.
After two periods the amount of temporary impact that has decayed is
1 � e�0:5$2 ¼ 0:632. Fig. 4.3D illustrates the quantity of temporary
impact remaining for this function over several trade periods. Readers
can verify that values in this figure match the values computed above.

Table 4.1 Temporary Impact Rate of Decay.

Temporary Impact Trade #1 Trade #2 Trade #3 Average Price

Fast Decay $30.25 $30.30 $30.35 $30.30
Medium Decay $30.25 $30.38 $30.46 $30.37
Slow Decay $30.25 $30.45 $30.61 $30.44
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Example #3: Temporary Decay Formulation
The current price is $30.00 and the temporary impact of each trade xk is
f ðxkÞ (we exclude permanent impact here for simplicity). If the decay func-
tion parameter is g the price for our sequence of trades is:

P0 ¼ 30:00

The price of the first trade P1 is the initial price plus the impact of the trade:

P1 ¼ 30:00þ f ðx1Þ
The price of the second trade P2 is the initial price plus the impact of the
second trade plus the remaining impact from the first trade:

P2 ¼ P0 þ f ðx2Þ þ f ðx1Þ$e�g$1

The price of the third trade P3 is the initial price plus the impact of the third
trade plus all remaining temporary impact from all previous trades:

P3 ¼ P0 þ f ðx3Þ þ f ðx2Þ$e�g$1 þ f ðx1Þ$e�g$2

Following, the price of the kth trade Pk is:

Pk ¼ P0 þ f ðxkÞ þ f ðxk�1Þ$e�g$1 þ.þ f ðxk�jÞ$e�g$j þ.þ f ðx1Þ$e�g$ðk�1Þ

A general formulation of this expression is:

Pk ¼ P0 þ
X

f ðxjÞ$e�0:5$ðk�jÞ

Illustration #4: Various Market Impact Price
Trajectories
Mathematically, market impact is the difference between the price trajectory
of the stock with the order and the price trajectory that would have occurred
had the order not been released to or traded in the market. We are not able to
observe both price paths simultaneously, only price evolution with the order
or price evolution without the order. Scientists have not figured a way to
construct a controlled experiment that will observe both situations simulta-
neously. Our failure to simultaneously observe both potential price trajec-
tories’ market impact has often been described as the Heisenberg
uncertainty principle of finance.

Fig. 4.4 illustrates four potential effects of market impact cost. Fig. 4.4A
shows the temporary impact effect of a trade. The buy order pushes the price
up and then reverts to its original path. Fig. 4.4B depicts the permanent impact
effect of a trade. The buy order pushes the price up. However, after the trade
the price does not revert to its original path, but instead is parallel at higher
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than the original path. Fig. 4.4C shows a combination of temporary and per-
manent impacts. First, the order pushes the stock price up followed by tempo-
rary reversion but in this case the price trajectory remains just slightly higher
and parallel to the original trajectory. Fig. 4.4D illustrates temporary impact
disguised as permanent impact. In this example, the decay of market impact
is extremely slow. It is so slow in fact that temporary impact has not
completely dissipated by the end of the trading horizon or trade day. Thus
the end of day price is composed of permanent impact with a large quantity
of temporary impact remaining. Uninformed analysis may mistakenly identify
the full price dislocation as permanent impact. Incorrect identification can
have a dire consequence on posttrade attribution and performance evaluation.
Recognizing this prospect, many analysts have begun to employ future prices
such as the next day’s opening price or the closing price on the next trade day
or 2 trade days hence to ensure temporary impact has fully dissipated.

Developing a Market Impact Model
To best understand the proposed market impact modeling approach, it is
helpful to review what has been uncovered in previous studies. First, cost
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is dependent on number of shares traded (e.g., trade size, total order size, or
imbalance). This was demonstrated by Loebb (1983), Holtausen, Leftwich
and Mayers (1987), Chan and Lakoniskhok (1993), Plexus Group (2000),
etc. Second, costs vary by volatility and market capitalization, e.g., Stoll
(1978), Amidhud and Mendelson (1980), Madhavan and Sofianos (1998),
Chan and Lakoniskhok (1995), Keim and Madhavan (1997), and Breen,
Hodrick and Korajczyk (2002). Third, price impact results from information
leakage and liquidity needs. Fourth, market conditions affect the underlying
costs, e.g., Beebower and Priest (1980), Wagner and Edwards (1993), Per-
old and Sirri (1993), Copeland and Galai (1983), Stoll (1995), etc. Finally,
trading strategy (style) influences trading cost, e.g., Kyle (1985), Bertismas
and Lo (1998), Grinold and Kahn (1999), and Almgren and Chriss (1999,
2000). Following these results, we are finally ready to define the essential
properties for a market impact model.

Essential Properties of a Market Impact Model
Based on these research and empirical findings, we postulate the essential
properties of a market impact model below. These expand on those
published in Optimal Trading Strategies (2003) and Algorithmic Trading
Strategies (2006).

(P1) Impact costs increase with size. Larger orders will incur a higher impact
cost than smaller orders in the same stock and with the same strategy.

(P2) Impact costs increase with volatility. Higher volatility stocks incur
higher impact costs for the same number of shares than for lower vola-
tility stocks. Volatility serves as a proxy for price elasticity.

(P3) Impact cost and timing risk depend on trading strategy (e.g., trade
schedule, participation rate, etc.). Trading at a faster rate will incur
higher impact cost but less market risk. Trading at a slow rate will incur
less impact but more market risk. This is known as the trader’s dilemma.
Traders need to balance the tradeoff between impact cost and risk.

(P4) Impact costs are dependent upon market conditions and trading pat-
terns. As the order is transacted with more volume the expected impact
cost will be lower. As the order is transacted with less volume the ex-
pected impact cost will be higher.

(P5) Impact cost consists of a temporary and permanent component. Tem-
porary impact is the cost due to liquidity needs and permanent impact
is the cost due to the information content of the trade. They each have a
different effect on the cost of the trade.

(P6) Market impact cost is inversely dependent upon market capitalization.
Large cap stocks have lower impact cost and small cap stocks have
higher impact costs in general (holding all other factors constant).
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Some difference in cost across market capitalization categories, how-
ever, can be explained by volatility. For example, there are examples
of small cap stocks having lower costs than large cap stocks holding
all other factors constant, and there are examples of large cap stocks
having higher costs than small cap stocks holding all other factors con-
stant. This difference, however, can usually be explained through price
volatility.

(P7) Trading costs increase with spreads. Stocks with larger bideask
spreads have higher trading costs than stocks with smaller spreads
(all other factors held constant).

Additional factors that were found to explain differences in impact cost
across stocks include:

(P8) Trading stability. Differences in impact cost at the stock level are also
dependent upon the stability of daily volumes and the intraday trading
patterns (e.g., how the stock trades throughout the day and the quan-
tity of block volume). Stocks with stable trading patterns (e.g., cer-
tainty surrounding day-to-day volumes, intraday volume profile,
and quantity of block executions) are generally associated with lower
impact cost compared to stocks exhibiting a high degree of instability
(e.g., high uncertainty surrounding day-to-day volumes, large varia-
tions in intraday patterns, and choppy or sporadic block executions).

Since large cap stocks are associated with more stable trading pat-
terns and small cap stocks generally relate to less stable trading
patterns, market cap is a reasonable proxy for trading stability.
However, at times, mature small cap companies exhibit more sta-
bility than large caps, and vice versa.

(P9) Stock-specific risk (idiosyncratic risk). We found the error in trading
cost (measured as the difference between the estimated cost and the
actual cost) was correlated to the stock’s idiosyncratic risk. This is
an indication that price elasticity is dependent on stock volatility
but there also appears to be a company-specific component.

(P10) Spreads are a proxy for trading pattern uncertainty. While spreads are
treated as a separate transaction cost component, we have found that
spreads are also correlated with company-specific market impact cost.
This finding, however, is more likely to be due to stock-specific
trading stability than due to actual spreads (because spread costs
were subtracted from the trading cost). Stocks with higher spreads
were also usually those stocks with less stable intraday trading pat-
terns. The higher spreads seemed to account for the instability in
intraday trading patterns.
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The Shape of the Market Impact Function
Market impact cost is dependent upon order size expressed as a percentage
of average daily volume (ADV), volatility, and trade strategy expressed in
terms of percentage of volume or trade time.

Fig. 4.5A illustrates the shape of the market impact function with order size.
Empirical evidence shows that the shape of the market impact function
expressed in basis points is a concave function. In practice, the market
impact cost function can be either convex, concave, or linear. Fig. 4.5B
shows impact as an increasing function of volatility. In trading, volatility
is a proxy for price elasticity where higher volatility stocks have higher mar-
ket impact than lower volatility stocks. Fig. 4.5C illustrates market impact
cost as a decreasing function of trade time. Investors can decrease their
impact cost by trading over a longer time horizon. Trading over a longer
period allows an opportunity for additional counterparties to enter the market
and transact with the investor at the investor’s preferred price. Investors who
wish to transact in a timelier manner will be forced to offer the market a pre-
mium to attract additional counterparties to arrive into the market sooner
rather than later. Fig. 4.5D illustrates market impact cost as an increasing
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function with percentage of volume (POV) trading rate. The more aggressive
the POV rate, the higher the market impact, and the more passive the POV
rate, the lower the market impact. Trade time and POV rate are converse
functions. As POV rate increases, trade time decreases, and as POV rate de-
creases, trade time increases. Investors will often specify the POV rate for
algorithmic trading purposes.

Market impact expressed in total dollars as a function of order size is an
increasing convex function. This market impact curve must be increasing
following a convex shape, otherwise there would not be any benefit result
from slicing the order. A comparison of the market impact function
expressed in basis points and dollars is shown in Fig. 4.6.

This phenomenon can be explained via the following examples.
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Example: Convex Shape
A formulation of a market impact function in dollars MIð$Þ following a
convex relationship with order size is as follows:

MIð$Þ ¼ 0:005$Shares2

If the order size is S ¼ 100, the market impact cost is
MIð$Þ ¼ 0:005$1002 ¼ $50. If we split the order into two smaller sizes
of 50 shares each we need to make two market trades to complete all 100
shares. The market impact cost of the S ¼ 50 share order is
MIð$Þ ¼ 0:005$502 ¼ $12:50. Thus the total cost for two trades is
MIð$Þ ¼ 2$$12:50 ¼ $25.

Thus when the market impact function expressed in dollars is a convex
function with order size, we will incur a lower market impact cost if we
slice the order into smaller sizes.

A convex relationship is the correct market impact relationship with size.

Example: Linear Shape
A formulation of a market impact function in dollars MIð$Þ following a
linear relationship with order size is as follows:

MIð$Þ ¼ 0:5$Shares

If the order size is S ¼ 100, the market impact cost is
MIð$Þ ¼ 0:5$100 ¼ $50. If we split the order into two smaller sizes of
50 shares each we need to make two market trades to complete all 100
shares. The market impact cost of the S ¼ 50 share order is
MIð$Þ ¼ 0:5$50 ¼ $25. Then, the total cost for two trades is
MIð$Þ ¼ 2$$25 ¼ $50.

Notice that this is the same as if we traded all 100 shares at once. Therefore
if the market impact function expressed in dollars follows a linear relation-
ship there would be no benefit to slicing an order and trading over time.

A linear relationship is not a correct market impact relationship with size.

Example: Concave Shape
A formulation of a market impact function in dollars MIð$Þ following a
concave relationship with order size is as follows:

MIð$Þ ¼ 5$Shares1=2
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If the order size is S ¼ 100, the market impact cost is
MIð$Þ ¼ 5$1001=2 ¼ $50. If we split the order into two smaller sizes of
50 shares each we need to make two market trades to complete all 100
shares. The market impact cost of the S ¼ 50 share order is
MIð$Þ ¼ 5$501=2 ¼ $35:355. Then, the total cost for two trades is
MIð$Þ ¼ 2$$35:355 ¼ $70:71.

Notice that this is more expensive than if we traded all 100 shares at once.
Therefore if the market impact function expressed in dollars follows a
concave relationship it would be more expensive to slice an order and trade
over time. Astute market participants would realize this as an arbitrage op-
portunity to earn a short-term trading profit.

A concave relationship is not a correct market impact relationship with size.

DERIVATION OF MODELS
We provide an in-depth discussion of two market impact modeling ap-
proaches: the AC path-dependent approach and the I-Star cost allocation
approach.

Almgren and Chriss Market Impact Model
The AC market impact model is path dependent based on the actual
sequence of trades and executions. Cost is computed as the difference be-
tween the actual transaction value of the sequence of trades and the trans-
action value that would have occurred had all the trades been executed at
the arrival price. The AC model follows closely the graphical representation
shown in the price trajectory graphs (Madhavan, 2000).

The cost function corresponding to the AC model is:

Cost ¼ Side$
�
X

xiP0 �
X

xipi
�

(4.1)

where

Side ¼
�þ1 Buy Order

�1 Sell Order

xi ¼ shares traded in the ith transaction

pi ¼ price of the ith transaction
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P0 ¼ arrival price

X

xi ¼ total shares traded

It is important to note here that this calculation only incorporates the
trading-related transaction cost component and not potential opportunity
cost. For the purposes of building a market impact model, one of the basic
underlying assumptions is that all shares of the order X will be transacted,
e.g.,

P

xi ¼ X.

The AC model computes market impact cost for each individual trade. The
entire sequence of trades is then rolled up to determine total value traded
and total trading cost. Because this approach is based on the sequence of
trades the model is referred to as a path-dependent approach. Additionally,
because total cost is derived from trade-level data it is also often referred to
as a bottom-up approach.

The Side indicator function above allows us to use a consistent expression
for buy and sell orders. Many authors prefer to state the trading cost function
separately for buys and sells as follows:

Cost ¼
(

X

xiP0 �
X

xipi Buys
X

xipi �
X

xiP0 Sells

In later chapters (Chapter 13) we expand on the order completion assump-
tion and introduce ways investors can incorporate opportunity cost into the
market impact model and decision-making process. We show how investors
can develop strategies to maximize the likelihood of executing an order
within the desired price range (e.g., within their limit price) and hence mini-
mize the probability of incurring opportunity cost due to adverse price
movement.

The AC model is comprised of three main components: temporary cost
function, permanent cost function, and market impact dissipation function.
The temporary and permanent impact functions define how much the stock
price will move based on the number of shares traded. The dissipation func-
tion defines how quickly the temporary price dislocation will converge or
move back to its fair value (or in most situations, the new fair value that
incorporates the permanent market impact cost).
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Let us utilize a discrete time random walk model. This process is described
below.

Random Walk With Price DriftdDiscrete Time Periods
Let the arrival price or starting price be P0.

The price in the first period is equal to the starting price plus price drift in
the first period plus noise (price volatility). That is:

P1 ¼ P0 þ DP1 þ ε1

Here, DPj represents the natural price movement of the stock in the jth
period and is independent of the order (e.g., it would have occurred if the
order was or was not transacted in the market), and εj is random noise (vola-
tility) in the jth period.

The price in the second period is:

P2 ¼ P1 þ DP2 þ ε2

By substitution we have:

P2 ¼ P1 þ DP2 þ ε2 ¼ ðP0 þDP1 þ ε1Þ þ DP2 þ ε2

¼ P0 þ DP1 þ DP2 þ ε1 þ ε2

This can also be written as:

P2 ¼ P0 þ
X
2

j¼ 1

DPj þ
X
2

j¼ 1

εj

The discrete random walk model can then be generalized to determine the
expected price Pk at any period of time k as follows:

Pk ¼ P0 þ
X
k

j¼ 1

DPj þ
X
k

j¼ 1

εj

In practice, we often make assumptions about the properties and distribution
of the price drift DPj and volatility εj terms such as a constant drift term or
constant volatility.

In the case where there is no price drift term (e.g., no stock alpha over the
period), the discrete random walk model simplifies to:

Pk ¼ P0 þ
X
k

j¼ 1

εj
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Random Walk With Market Impact (No Price Drift)
Now let us consider the discrete random walk model without price drift but
with impact cost.

Let P0 ¼ arrival price, f ðxkÞ ¼ temporary impact, gðxkÞ ¼ permanent
impact from xk shares, and ε ¼ random noise.

The first trade price is:

P1 ¼ P0 þ f ðx1Þ þ gðx1Þ þ ε1

The second trade price is equal to the first trade price plus temporary and
permanent impact caused by trading x2 shares less the quantity of temporary
impact from the first trade that has dissipated from the market price at the
time of the second trade. This is:

P2 ¼ P1 þ f ðx2Þ þ gðx2Þ �
�

f ðx1Þ $
�

1� e�g$1
��þ ε2

where f ðx1Þ$
�

1�e�g$1
�

represents the reduction of temporary market
impact from the first trade.

Now, if we substitute our first trade price into the equation above we have:

P2 ¼ fP0 þ f ðx1Þþ gðx1Þþ ε1g þ ff ðx2Þþ gðx2Þg �
�

f ðx1Þ $
�

1� e�g$1
��þ ε2

This reduced to:

P2 ¼ P0 þ
�

f ðx2Þ þ f ðx1Þ$e�g$1
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cumulative Temporary

þfgðx1Þ þ gðx2Þg
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Cumulative Permanent

þ fε1 þ ε2g
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Cumulative Noise

where f ðx1Þ$e�g$1 is the remaining temporary impact from the first trade.

Following this formulation, the price in the third period is:

P3 ¼ P0 þ
�

f ðx3Þ þ f ðx2Þ$e�g$1 þ f ðx1Þ$e�g$2
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cumulative Temporary

þfgðx1Þ þ gðx2Þ þ gðx3Þg
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cumulative Permanent

þfε1 þ ε2 þ ε3g
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cumulative Noise
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After simplifying, we have:

P3 ¼ P0 þ
X
3

j¼ 1

f ðxjÞ$e�g$ð3�jÞ þ
X
3

j¼ 1

gðxjÞ þ
X
3

j¼ 1

εj

In general, the price in period k is:

Pk ¼ P0 þ
X
k

j¼ 1

f ðxjÞ$e�g$ðk�jÞ þ
X
k

j¼ 1

gðxjÞ þ
X
k

j¼ 1

εj

With the addition of price drift DP into our formulation the equation
becomes:

Pk ¼ P0 þ
X
k

j¼ 1

DPj þ
X
k

j¼ 1

f ðxjÞ$e�g$ðk�jÞ þ
X
k

j¼ 1

gðxjÞ þ
X
k

j¼ 1

εj

To estimate the AC model we need first to define our f ðxÞ and gðxÞ impact
functions and corresponding parameters, as well as the dissipation impact
rate:

f ðxÞ ¼ side$a1$x
a2

gðxÞ ¼ side$b1$x
b2

decay function ¼ e�g$t

Then, we must estimate the following five parameters using actual trade
data:

a1; a2; b1; b2; g

In practice, it is often difficult to find statistically significant robust and sta-
ble parameters over time. Often, parameters jump around from period to
period and from stock to stock. Furthermore, these parameters frequently
take on counterintuitive values such as whether either a2 < 0 or b2 < 0,
which would imply cheaper costs as we increase the quantity of shares
traded. This would also create an arbitrage opportunity (why?). For example,
an investor would be able to purchase a large number of shares of stock and
then sell smaller pieces of the order at higher prices. While this may be

Derivation of Models 119



appropriate for large bulk purchases at an outlet store it does not hold true for
stock trading.

The AC model is:

Pk ¼ P0 þ
X
k

j¼ 1

f ðxjÞ$e�g$ðk�jÞ þ
X
k

j¼ 1

gðxjÞ þ
X
k

j¼ 1

εj (4.2)

I-STAR MARKET IMPACT MODEL
This section provides an overview of the I-Star market impact model. The
model was originally developed by Kissell and Malamut (1998) and has
been described in Optimal Trading Strategies (Kissell and Glantz, 2003),
Financial Research Letters (Kissell, Glantz and Malamut, 2004), and Algo-
rithmic Trading Strategies (Kissell, 2006). The model has greatly evolved
since its inception to accommodate the rapidly changing market environ-
ment such as algorithmic trading, Regulation National Market System, deci-
malization, dark pools, defragmentation, a proliferation of trading venues,
etc. A full derivation of the model is provided below with additional insight
into where the model has evolved to incorporate industry and market micro-
structure evolution.

The I-Star impact model is:

I�bp ¼ a1$




Q

ADV

�a2

$sa3 (4.3)

MIbp ¼ b1$I
�$POVa4 þ ð1� b1Þ$I� (4.4)

TR ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

S

ADV
$
1� POV

POV

r

$104bp (4.5)

MODEL FORMULATION
I-Star is a cost allocation approach where participants incur costs based on
the size of their order and the overall participation with market volumes.
The idea behind the model follows from economic supplyedemand
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equilibrium starting at the total cost level.1 The model is broken down into
two components: instantaneous impact denoted as I-Star or I* and market
impact denoted as MI, which represents impact cost due to the specified
trading strategy. This impact function is broken down into a temporary
and permanent term.

I-Star: Instantaneous Impact Equation

I�bp ¼ a1$




Q

ADV

�a2

$sa3 (4.6)

In trading, I-Star represents what we call theoretical instantaneous impact
cost incurred by the investor if all shares were released to the market.
This component can also be thought of as the total payment required to
attract additional sellers or buyers to the marketplace, for example, the pre-
mium buyers must provide or discount sellers grant to complete the order
within a specified timeframe.

In economics, I-Star represents the incremental cost incurred by demanders
resulting from a supplyedemand imbalance. We depicted this above via a
graphical illustration. Following that example, our I-Star cost is determined

1The reasoning behind this formulation and how it diverges from the AC expression is sim-
ple. Prior to moving into the financial industry I was employed by R.J. Rudden Associates,
Inc., a leading global consulting firm specializing in utility cost of service studies as part of
rate cases. In these cases, utilities (both natural gas and electric companies) formulated
studies to determine serving cost per customer class by mapping actual costs to usage point
and allocating this quantity to each party based on usage percentage. This would ensure
each customer paid only for services consumed based on the cost of providing that service.
In some situations when each customer has their own individual meter it is straight forward
to determine individual consumption levels such as customer electric usage (kWh) and/or
customer natural gas usage (BTU). In other situations, however, it is often difficult to deter-
mine individual customer consumption levels due to aggregated services. For example,
there are multiple parties sharing the same generators, overhead transmission lines, pipeline
and natural gas storage facilities, as well as corporate functions such as strategy and admin-
istrative services. The basic concept of these studies was that we started with a total cost
value that was known from accounting records, and then these costs were mapped and allo-
cated to the appropriate customer based on usage and cost to provide the service. This was
done to ensure a fair and equitable system across all customers so that no single customer
class was being charged more than their fair usage. Those who played a large role (and un-
knowingly) in the development of an industry leading market impact model included: Rich
Rudden, Steve Maron, John Little, Russ Feingold, Kevin Harper, and William Hederman.
Thus, fittingly, when I was presented with a project to compute and estimate market impact
cost, the modeling approach I undertook followed this cost allocation methodology. The I-
Star model follows directly from this system: actual costs as mapped to their underlying
components and allocated to point of usage. The methodology is described below and as
we show has many appealing properties for execution strategies, algorithmic trading rules,
as well as for portfolio optimization and basket trading strategies.
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directly from the imbalance Dq and the corresponding change in price Dp,
that is, I� ¼ Dq$Dp ¼ Dq$ðp2�p�Þ (Fig. 4.2D).
The variables of the instantaneous impact equation are:

Q ¼ market imbalance ðthe diffrence between buying and selling pressureÞ

ADV ¼ 30 day average daily volume ðcomputed during exchange hoursÞ

s ¼ 30 day volatility ðday� to� day price changeÞ

a1; a2; a3 ¼ model parameters ðvia non� linear regression analysisÞ

The Market Impact Equation

MIbp ¼ b1$I
�$POVa4

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Temporary Impact

þð1� b1Þ$I�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Permanent Impact

(4.7)

Market impact represents the cost that is expected to be borne by the trader
based upon the underlying execution strategy, e.g., POV, trade schedule,
etc.

The variables of the model are:

I� ¼ Instantaneous impact

POV ¼ percentage of volume trading rate

b1 ¼ temporary impact parameters ðvia non� linear regression analysisÞ

a4 ¼ model parameters ðvia non� linear regression analysisÞ
Market impact further consists of the temporary and permanent cost
component.

Derivation of the Model
Consider a situation where buyers have V shares to buy and sellers have
Vshares to sell, both within the same time period and urgency needs. In
this situation we have an equilibrium condition where the shares to buy
are equal to the shares to sell. Therefore we expect there to be V shares trans-
acted in the market without any extraordinary price movement (but there
may be some price movement due to market, natural alpha, or noise).
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Now suppose another participant (participant A) enters the market with an
order to buy Q shares over the same time period and with the same urgency
needs. This creates a buy market imbalance equal to theQ shares. Notice that
this is equivalent to the Dqshares from our supplyedemand above. The new
buy shares are V þ Q and the sell shares remain at V . For these additional
Q shares to execute, buyers will have to provide a premium to the market
to attract the additional sellers.

Let’s define this total premium as I�$ . Notice here that we are describing this
process using dollar units. This process is the same whether dollars, dollars/
share, or basis points. Our temporary impact parameter (b1 from Eq. 4.7) de-
fines the breakdown between temporary and permanent dollars. Total tempo-
rary cost is b1$I�$ and total permanent cost is ð1 �b1Þ$I�$ .
In this formulation, it is not fair to assume that the entire temporary cost will
be borne by participant A alone. Rather, the temporary cost will be shared
(allocated) across all buyers. Think of this approach as an average costing
methodology.

Since we now expect there to be V þ Q shares traded, that is, the original
Vshares plus the newly arrived Q shares, the portion of total temporary
impact expected to be borne by investor A is calculated in proportion to
her total trade volume. This is:

Q

Qþ V

Cost Allocation Method
Temporary market impact cost is dependent upon the underlying trading
rate. This rate is expressed in terms of percentage of volume or simply
POV. It is:

POV ¼ Q

Qþ V

In this notation, Q is the net imbalance (absolute difference between buying
and selling pressure), V is the expected volume excluding the order imbal-
ance, and Qþ V is the total number of shares that is expected to trade in
the market.

Therefore we have:

Temporary Impact ¼ b1$I
�
$$

Q

Qþ V
(4.8)

Permanent Impact ¼ ð1� b1Þ$I�$ (4.9)
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Or alternatively:

MI ¼ b1$I
�
$$

Q

Qþ V
þ ð1� b1Þ$I�$ (4.10)

We can see from Eq. (4.10) that if participant A transacts more aggressively,
say in a shorter period where only one-half of the expected market volume
will transact, that is, 1

2V , the temporary market impact cost allocated to
participant A will now be:

Q

Qþ 1
2
V

which is a higher percentage than previous.

If A trades over a longer period where 2Vshares are expected to trade, mar-
ket impact cost allocated to her will be:

Q

Qþ 2V

which is a smaller percentage than previous.

This example helps illustrate that market impact cost is directly related to
the urgency of the strategy. Quicker trading will incur higher costs on
average than slower trading, which will incur lower costs on average.
Trading risk, on the other hand, will be lower for the more urgent orders
and higher for the more passive orders, e.g., the trader’s dilemma.

Due to the rapidly changing nature of the financial markets from regulatory
change, structural changes, investor confidence, and perception of order
flow information that often accompanies aggressive trading, many partici-
pants have begun to fit the market impact model using a more general
form of the equation that incorporates an additional parameter a4. This
formulation is:

MIbp ¼ b1$I
�$




Q

Qþ V

�a4

þ ð1� b1Þ$I� (4.11)

Or in terms of POV we have:

MIbp ¼ b1$I
�$POVa4 þ ð1� b1Þ$I� (4.12)

The relationship between temporary impact and POV rate is shown in
Fig. 4.7. The percentage of temporary impact that will be allocated to the or-
der is shown on the y-axis and the corresponding POV rate is shown on the
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x-axis. The figure shows the percentage allocated for various POV functions.
For example, when a4 ¼ 1 the relationship is linear and costs change at the
same rate. When a4 ¼ 0:5 the relationship is a square root function. Costs
increase much quicker for the lower POV rates and at a reduced rate for the
later POV rates. When a4 ¼ 2 the relationship is a squared function. Costs
increase at a faster rate for the lower POV rates and at a slower rate for the
higher POV rates. Depending upon the rate of change, the a4 parameter, in-
vestors may structure their underlying trading schedule in different ways
either trading faster or slower than normally. Notice that at POV ¼ 100%,
investors incur the entire temporary cost regardless of the function of the
temporary impact rate.

Up to this point we have still not yet defined the functional form of I�. Our
practical experience, empirical evidence, and data observations have found
that trading cost is dependent upon size, volatility, and strategy. Thus our
functional form needs to include at least these variables. Some alternative
or competing models have included market cap or other stock fundamental
factors to differentiate between costs for different stocks even for the same
relative size, e.g., 5% ADV. Our analysis has found that volatility provides
a better fit than variables such as market cap, log of market cap, etc. At the
very least, we need to ensure that the model adheres to the essential proper-
ties defined above.
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I* Formulation
Our preferred functional form for I�is the following power function:

I�bp ¼ a1$




Q

ADV

�a2

$sa3 (4.13)

Notice the functional form includes parameters a1; a2; a3 so that we do not
force any preconceived notions onto the model such as a square root function
with size or a linear relationship with volatility (give examples of each).
These parameter values are derived from our underlying data set.

At this point, we alert readers about setting fixed parameter values. For
example, many industry participants set a2 ¼ 1

2, which is the square root
functiondor, more precisely, numerous industry participants assume
that costs increase with the square root of size. Setting this assumption of
a2 ¼ 1

2 implies that costs in all markets and across all periods of time result
in investors reacting to order information in the exact same manner, which is
not true. Recalling the recent financial crisis in 2008e09, we found that the
cost parameter and investor reaction to order size vary significantly. Thus we
suggest that analysts resist factoring preconceived notions into the model.

Where did this 1/2 or square root belief come from? We believe the 1/2 po-
wer was set in place due to the way volatility scales with time or because of
the 1/2 parameter behind the optimal economic order quantity model. In
these cases, there is a natural reason for the 1/2 parameter to exist but
this is not true when dealing with market impact cost modeling or price evo-
lution and displacement based on order information.

There have been other functional forms of I�that have been proposed. For
example, Optimal Trading Strategies (2003) presents three forms of the I-
Star model:

I�bp ¼ a1$




Q

ADV

�

þ a2$sþ a3 (4.14)

I�bp ¼ a1$




Q

ADV

�

þ a2$s
a3 þ a4 (4.15)

I�bp ¼ a1$




Q

ADV

�a2

$sa3 (4.16)

We have performed significant testing on these models (as well as other
functional forms) using numerous data sets, time periods, and global
regions, and found the power function formulation to be the most robust,
stable, and accurate.
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One important question that surfaces: since the parameters a1; a2; a3; b1
are estimated across a data set of stocks and are identical for all stocks,
how do we differentiate trading cost across different stocks and the same or-
der size?

To address this, let us revisit our graphical illustration of market impact us-
ing the supplyedemand curves. When a new buyer enters the market the
demand curve shifts out, while the supply curve shifts up to account for or-
der information. A new clearing price P2emerges at the intersection of these
new curves, and is determined from the slope of the supply and demand
curves. This slope happens to be the price elasticity of demand and supply.
It is often difficult to ascertain the correct price elasticity for a physical good,
and even more difficult to ascertain the correct price elasticity for a financial
instrument. However, the volatility term serves as an effective proxy for the
financial instrument’s price elasticity term. Notice that volatility is present in
each of the variations of I-Star above. Volatility is used in the model to assist
us uncover how market impact will differ across stocks. This is explained as
follows:

The instantaneous impact equation for a stock k is.

I�k ¼ a1$




Qk

ADVk

�a2
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Rewrite this expression as follows:

I�k ¼ �a1$sa3
k

�
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Shape

We now have a sensitivity expression a1$sa3k , which is stock specific, and a

shape expression




Q
ADV

�a2

, which is a universal shape relationship across all

stocks. If we have parameter a2 ¼ 1 then we have a linear function where its

slope is a1$sa3k . This is identical to the supplyedemand representation we

showed above. In our formulation, we allow for nonlinear supply and de-
mand curves where each stock has its own sensitivity but the shape of the
curve is the same across all instruments (which has been found to be a
reasonable relationship).

A natural question is why do we not estimate these parameters at the stock
level? The answer is we do not have sufficient data to estimate these param-
eters for all stocks. If we look at market impact for a single stock, change is
often dominated by market movement and noise making it very difficult to
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determine robust and stable parameters at the stock level. In the next chap-
ter, we show challenges behind fitting a stock-level model.

Comparison of Approaches
How do the AC and I-Star models compare? Readers might be interested to
know that both models will converge to the same trading trajectory for
certain parameter values. This was shown by Roberto Malamut (Ph.D., Cor-
nell University) via both mathematical proof and simulation techniques.

In addition, even if the estimated parameters are close to true parameter
values for both models, the resulting trading trajectory will be based on
each model. We, however, have found an easier time finding a relationship
between cost and order size using the I-Star impact models, but we
encourage readers to experiment with both approaches to determine the
modeling technique that works best for their needs.

Estimation of the I-Star market impact model parameter is provided in the
chapter Estimating I-Star Market Impact Model Parameters.
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Chapter5
Probability and Statistics

INTRODUCTION
In this chapter we provide an overview of probability and statistics and
discuss their use in algorithmic trading applications. The chapter begins
with an overview of the mathematics required for probability and statistics
modeling and continues with a review of essential probability distribution
functions required for model construction and parameter estimation.

RANDOM VARIABLES
A random variable is defined as a variable that can take on different values.
These values are determined from its underlying probability distribution, and
the actual distribution is characterized by a mean and standard deviation term
(such as a normal distribution) and a skewness and kurtosis measure. The
value of the random variable is also often subject to random variations
due to noise or chance.

A random variable can represent many different items such as expected
daily temperature at a location in the middle of July, the expected atten-
dance at a sporting event, a sports team’s strength rating, as well as the
probability that a team will win a game or score a specified number of
points.

A random variable can also be the parameter of a model used to predict the
outcome of the sports game. The goal of the analyst in this case is to
compute an accurate estimate of this random variable parameter.

Random variables can be either discrete or continuous values. A discrete
random variable can take on only a specific finite value or a countable
list of values. For example, a discrete random variable in sports is the num-
ber of points that a team scores or the number difference between the home.
team points scored and away team points scored. A continuous random var-
iable can take on any numerical value in an interval (and theoretically have
an infinite number of decimal places). For example, a continuous random
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variable in sports could be the team’s strength rating or a performance
metric such as batting average (which can both have an infinite number
of decimals).

PROBABILITY DISTRIBUTIONS
Mathematicians utilize probability distribution functions in many ways. For
example, probability distribution functions can be used to “quantify” and
“describe” random variables, determine statistical significance of estimated
parameter values, predict the likelihood of a specified outcome, and calculate
the likelihood that an outcome will fall within a specified interval (e.g., con-
fidence intervals). As mentioned, these probability distribution functions are
described by their mean, variance, skewness, and kurtosis terms.

A probability mass function (pmf) is a function used to describe the proba-
bility associated with the discrete variable. A cumulative mass function (cmf)
is a function used to determine the probability that the observation will be
less than or equal to some specified value.

In general terms, if x is a discrete random variable and x* is a specified value,
then the pmf and cmf functions are defined as follows:

Pmf:

f(x) ¼ Prob(x ¼ x*)

Cmf:

FðxÞ ¼ Probðx� x�Þ
Probability distribution functions for continuous random variables are like
those for discrete random variables with one exception. Since the contin-
uous random variable can take on any value in an interval the probably
that the random variable will be equal to a specified value is thus zero.
Therefore the probability density function (pdf) for a continuous random
variable defines the probably that the variable will be within a specified in-
terval (say between a and b) and the cumulative density function (cdf) for a
continuous random variable is the probability that the variable will be less
than or equal to a specified value x*.

A pdf is used to describe the probability that a continuous random variable
will fall within a specified range. In theory, the probability that a continuous
value can be a specified value is zero because there are an infinite number of
values for the continuous random value. The cdf is a function used to deter-
mine the probability that the random value will be less than or equal to some
specified value. In general terms, these functions are:
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Pdf:

Probða�X� bÞ ¼
Z b

a

f ðxÞdx

Cdf:

FðxÞ ¼ ProbðX� xÞ ¼
Z x

�N

f ðxÞdx

Henceforth, we will use the terminology pdf to refer to probability density
function and probability mass function, and we will use the terminology cdf
to refer to cumulative density function and cumulative mass function.

Example: Discrete Probability Distribution Function
Consider a scenario where a person rolls two dice and adds up the numbers
rolled. Since the numbers on the dice range from 1 to 6, the set of possible
outcomes is from 2 to 12. A pdf can be used to show the probability of real-
izing any value from 2 to 12 and the cdf can be used to show the probability
that the sum will be less than or equal to a specified value.

Table 5.1 shows the set of possible outcomes along with the number of ways
of achieving the outcome value, the probability of achieving each outcome
value (pdf), and the probability that the outcome value will be less than or
equal to the outcome value (cdf). For example, there was six different
ways to roll a 7 from two dice. These combinations are (1,6), (2,5), (3,4),

Table 5.1 Discrete Random Variable: Rolling Die.

Value Count Pdf Cdf

2 1 3% 3%
3 2 6% 8%
4 3 8% 17%
5 4 11% 28%
6 5 14% 42%
7 6 17% 58%
8 5 14% 72%
9 4 11% 83%
10 3 8% 92%
11 2 6% 97%
12 1 3% 100%

Total 36 100%
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(4,3), 5,2), and (6,1). Since there are 36 different combinations of outcomes
from the die, the probability of rolling a 7 is 6/36 ¼ 1/6, and thus the pdf of 7
is 16.7%. Additionally, there are 21 ways that we can roll our die and have a
value that is less than or equal to 7. Thus the cdf is 21/36 ¼ 58%. The pdf
and cdf graphs for this example are shown in Figs. 5.1 and 5.2, respectively.

Example: Continuous Probability Distribution
Function
An example of a continuous probability distribution function can be best
shown via the familiar standard normal distribution. This distribution is
also commonly referred to as the Gaussian distribution as well as the bell
curve.

Table 5.2 provides a sample of data for a standard normal distribution. The
left-hand side of the table has the interval values a and b. The corresponding
probability to the immediate right in this table shows the probability that the
standard normal distribution will have a value between a and b. That is, if x is
a standard normal variable, the probability that x will have a value between a
and b is shown in the probability column.

For a standard normal distribution, the values show in column “a” and col-
umn “b” can also be thought of as the number of standard deviations where
1 ¼ plus one standard deviation and �1 ¼ minus one standard deviation
(and the same for the other values). Readers familiar with probability and
statistics will surely recall that the probability that a standard normal random
variable will be between�1 andþ1 is 68.3%, the probability that a standard
normal variable will be between �2 and þ2 is 95.4%, and the probability
that a standard normal variable will be between �3 and þ3 is 99.7%.
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n FIGURE 5.1 Probability Distribution Function (PDF) e Rolling
Dice.
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The data on the right-hand side of the table correspond to the probability that
a standard normal random value will be less than the value indicated in the
column titled “Z.” Readers familiar with probability and statistics will recall
that the probability that a normal standard variable will be less than 0 is
50%, less than 1 is 84%, less than 2 is 97.7%, and less than 3 is 99.9%.

Fig. 5.3 illustrates a standard normal pdf distribution curve and Fig. 5.4 il-
lustrates a standard normal cdf distribution curve. Analysts can use the
pdf curves to determine the probability that an outcome event will be within
a specified range and can use the cdf curves to determine the probability that
an outcome event will be less than or equal to a specified value. For example,
we utilize these curves to estimate the probability that a team will win a game
and/or win a game by more than a specified number of points. These tech-
niques are discussed in the subsequent sports chapters.
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n FIGURE 5.2 Cumulative Distribution Function (CDF) e Rolling
Dice.

Table 5.2 Standard Normal Distribution.

a b Pdf Z Cdf

�1 1 68.3% �3 0.1%
�2 2 95.4% �2 2.3%
�3 3 99.7% �1 15.9%

�inf �1 15.9% 0 50.0%
�inf �2 2.3% 1 84.1%

1 inf 15.9% 2 97.7%
2 inf 2.3% 3 99.9%
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Important note:

n One of the most important items regarding computing probabilities such
as the likelihood of scoring a specified number of points, winning a
game, or winning by at least a specified number of points is using the
proper distribution function to compute these probabilities.

n Different distribution functions will have different corresponding proba-
bility values for the same outcome value.

n It is essential that analysts perform a thorough review of the outcome
variable they are looking to estimate and determine the correct underly-
ing distribution.

n While there are many techniques that can be used to determine the proper
distribution functions, analysts can gain important insight using
histograms, pep plots, and qeq plots as the starting points.
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n We provide information about some of the more useful distributions
below and analysts are encouraged to evaluate a full array of these dis-
tributions to determine which is most the appropriate before drawing
conclusions about outcomes, winning teams, scores, etc.

Descriptive Statistics
Each probability distribution has a set of descriptive statistics that can be
used in analysis. The more important descriptive statistics for sports models
are:

Mean: the arithmetic mean, also known as the simple mean or equal
weighted mean. The mean of a data series is a unique value. The mean is
also known as the first moment of the data distribution:

m ¼ 1
n

X
n

i¼ 1

xi

Mode: the value(s) of a data series that occurs most often. The mode of a
data series is not a unique value.

Median: the value of a data series such that one-half of the observations are
lower or equal value and one-half the observations are higher or equal value.
The median value is not a unique number. For example, in the series 1, 2, 3
the median is the value 2. But in the series 1, 2, 3, 4 there is not a unique
value. Any number 2 < x < 3 is the median of this series since exactly
50% of the data values are lower than x and exactly 50% of the data points
are higher than x. A general rule of thumb is that if there are an odd number
of data points the middle value is the median, and if there is an even number
of data points the median is selected as the mean of the two middle points. In
our example 1, 2, 3, 4, the median would be taken as 2.5. However, any
value 2 < x < 3 such that 2 < x < 3 would also be correct.

Standard Deviation: the amount of dispersion around the mean. A small
standard deviation indicates that the data are all close to the mean and a
high standard deviation indicates that the data could be far from the mean.
The standard deviation V[x] is the square root of the variance V ½x� of the
data. The variance is also known as the second moment about the distribu-
tion mean:

s2 ¼ 1
n

X
n

i¼ 1

ðx� mÞ2

s ¼
ffiffiffiffiffi

s2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X
n

i¼ 1

ðx� mÞ2
s
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Coefficient of Variation: a measure of the standard deviation divided by the
mean. The coefficient of variation serves as a normalization of the data for a
fair comparison of data dispersion across different values (e.g., as a measure
of data dispersion of daily or monthly stock trading volumes):

COV ¼ s

x

Skewness: a measure of the symmetry of the data distribution. A positively
skewed data distribution indicates that the distribution has more data on the
right tailddata are positively skewed. A negatively skewed data distribution
indicates that the distribution has more data on the left tailddata are nega-
tively skewed. A skewness measure of zero indicates that the data are sym-
metric. Skewness is also known as the third moment about the mean:

Skewness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X
n

i¼ 1

ðx� mÞ
s

3
s

Kurtosis: a measure of the peakedness of the data distribution. Data distri-
butions with negative kurtosis are called platykurtic distributions and data
distributions with positive kurtosis are called leptokurtic distributions:

Kurtosis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X
n

i¼ 1

ðx� mÞ
s2

3
s

PROBABILITY DISTRIBUTION FUNCTIONS
In this section we provide a description of the important probability distri-
bution functions that are used in sports modeling. Readers interested in a
more thorough investigation of these distributions are referred to Dudewicz
and Mishra (1988), Meyer (1970), Pfeiffer (1978), and DeGroot (1989).

Our summary of the distribution statistics is based on and can also be found
online at: www.mathworks.com, www.mathworld.wolfram.com, www.
wikipedia.com, www.statsoft.com/textbook, and www.mathwave.com/
atricles.

These are excellent references and are continuously being updated with
practical examples. The probability and distribution functions below are
also a subset of those presented in Glantz and Kissell (2014) and used
for financial risk modeling estimation.
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CONTINUOUS DISTRIBUTION FUNCTIONS
Normal Distribution
Normal distribution is the workhorse of statistical analysis. It is also known
as the Gaussian distribution and a bell curve (for the distribution’s resem-
blance to a bell). It is one of the most used distributions in statistics and
is used for several different applications. The normal distribution also pro-
vides insight into issues where the data are not necessarily normal, but can
be approximated by a normal distribution. Additionally, by the central limit
theorem of mathematics we find that the mean of a sufficiently large number
of data points will be normally distributed. This is extremely useful for
parameter estimation analysis such as with our regression models.

Normal Distribution Statistics1

where erf is the Gauss error function, that is:

erfðxÞ ¼ 2
ffiffiffi

p
p

Z x

0
exp
�� t2

�

Normal distribution graph:
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Standard Normal Distribution
Standard normal distribution is a special case of normal distribution where
m ¼ 0; s2 ¼ 1. It is often essential to normalize data prior to analysis. A
random normal variable with mean m and standard deviation m can be
normalized via the following:

z ¼ x� m

s

Standard Normal Distribution Statistics1

Standard Normal Distribution Graph:
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Student’s t-Distribution
Student’s t-Distribution (aka t-distribution) is used when we are estimating
the mean of normally distributed random variables where the sample size is
small and the standard deviation is unknown. It is used to perform hypoth-
esis testing around data to determine if the data are within a specified range.
The t-distribution is used in hypothesis testing of regression parameters (e.g.,
when developing risk factor models). The t-distribution looks very similar to
the normal distribution but with fatter tails. It also converges to the normal
curve as the sample size increases.

Notation

Parameter

Distribution

Pdf

Cdf

Mean

Variance

Skewness

Kurtosis

Student′s t-Distribution1

Student’s t-Distribution Graph:
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Students t-Distribution
df=1
df=5
df=20
std. norm

Student’s t-distribution interesting notes:

Have you ever wondered why many analysts state that you need to have at
least 20 data points to compute statistics such as average or standard devi-
ation? The reason is that once there are 20 data points, Student’s t-distribu-
tion converges to a normal distribution. Analysts could then begin to use the
simpler distribution function.

Where did the name Student’s t-distribution come from? In many of the ac-
ademic textbook examples, Student’s t-distribution is used to estimate their
performance from class tests (e.g., midterms and finals, standardized tests,
etc.). Therefore the t-distribution is the appropriate distribution since it is a
small sample size and the standard deviation is unknown. But the distribu-
tion did not arise from evaluating test scores. Student’s t-distribution was
introduced to the world by William Sealy Gosset in 1908. The story behind
the naming of Student’s t-distribution is as follows: William was working at
the Guinness Beer Brewery in Ireland and published a paper on the quality
control process they were using for their brewing process. And to keep their
competitors from learning their processing secrets, Gosset published the test
procedure he was using under the pseudonym Student. Hence, the name of
the distribution was born.

Student’s t-distribution graph:

(with k ¼ 10, 20, 100, and normal curve)
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Log-Normal Distribution
Log-normal distribution is a continuous distribution of random variables
x ¼ log(y) whose natural logarithm is normally distributed. For example,
if random variable y ¼ expfyg has log-normal distribution, then x ¼
logðyÞ has normal distribution. Log-normal distributions are most often
used in finance to model stock prices, index values, asset returns, as well
as exchange rates, derivatives, etc.

Log-Normal Distribution Statistics1

where erf is the Gaussian error function.

Log-normal Distribution Graph:
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Uniform Distribution
Uniform distribution is used when each outcome has the same likelihood of
occurring. One of the most illustrated examples of uniform distribution is
rolling a die where each of the six numbers has equal likelihood of occur-
ring, or a roulette wheel where (again) each number has an equal likelihood
of occurring. Uniform distribution has constant probability across all values.
It can be either a discrete or continuous distribution.

Uniform Distribution Statistics1

Uniform Distribution Graph:
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Exponential Distribution
Exponential distribution is a continuous distribution that is commonly used
to measure the expected time for an event to occur. For example, in physics
it is often used to measure radioactive decay, in engineering it is used to
measure the time associated with receiving a defective part on an assembly
line, and in finance it is often used to measure the likelihood of the next
default for a portfolio of financial assets. It can also be used to measure
the likelihood of incurring a specified number of defaults within a specified
time period.

Exponential Distribution Statistics1

Exponential Distribution Graph:
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Chi-Square Distribution
Chi-square distribution is a continuous distribution with k ¼ 1, 2, ., n de-
grees of freedom. It is used to describe the distribution of a sum of squared
random variables. It is also used to test the goodness of fit of a distribution of
data, whether data series are independent, and for estimating confidences
surrounding variance and standard deviation for a random variable from a
normal distribution. Additionally, chi-square distribution is a special case
of gamma distribution.

where g

�

k
2;

x
2

�

is known as the incomplete gamma function (www.

mathworks.com www.mathworld.wolfram.com)

Chi-Square Distribution Graph:
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Logistic Distribution
Logistic distribution is a continuous distribution function. Both its pdf and
cdf functions have been used in many different areas such as logistic regres-
sion, logit models, and neural networks. It has been used in the physical sci-
ences, sports modeling, and recently in finance. Logistic distribution has
wider tails than a normal distribution so is more consistent with the under-
lying data and provides better insight into the likelihood of extreme events.

Logistic Distribution Statistics1
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Logistic distribution graph:
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Triangular Distribution
Triangular distribution is when there is a known relationship between the var-
iable data but when there are relatively few data available to conduct a full
statistical analysis. It is often used in simulations when there is very little
known about the data-generating process and is often referred to as a “lack
of knowledge” distribution. Triangular distribution is an ideal distribution
when the only data on hand are the maximum and minimum values, and
the most likely outcome. It is often used in business decision analysis.

Notation

Parameter

Distribution

Pdf

Cdf

Mean

Variance

Skewness

Kurtosis

Triangular

Triangular Distribution Statistics1

Triangular Distribution Graph:
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DISCRETE DISTRIBUTIONS
Binomial Distribution
Binomial distribution is a discrete distribution used for sampling experiments
with replacement. In this scenario, the likelihood of an element being selected
remains constant throughout the data-generating process. This is an important
distribution in finance in situations where analysts are looking to model the
behavior of market participants who enter reserve orders to the market.
Reserve orders are orders that will instantaneously replace if the shares are
transacted. For example, if an investor who has 1000 shares to buy may
only enter 100 shares at the bid at a time. Once those shares are transacted
the order immediately replenishes (but the priority of the order moves to the
end of the queue at that trading destination at that price). These order
replenishments could occur with a reserve or iceberg type of order or via
high-frequency trading algorithms where once a transaction takes place the
market participant immediately submits another order at the same price and or-
der size, thus giving the impression that the order was immediately replaced.

Binomial Distribution Statistics1

Binomial Distribution Graph:

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7 8 9 10

Binomial Distribution n=10, p=0.25
n=10, p=0.5

Discrete Distributions 149



Poisson Distribution
Poisson distribution is a discrete distribution that measures the probability
of a given number of events happening in a specified time. In finance, Pois-
son distribution could be used to model the arrival of new buy or sell orders
entered into the market or the expected arrival of orders at specified trading
venues or dark pools. In these cases, Poisson distribution is used to provide
expectations surrounding confidence bounds around the expected order
arrival rates. Poisson distributions are very useful for smart order routers
and algorithmic trading.

Poisson Distribution Statistics
1

End Notes
[1] www.mathworld.wolfram.com/topics/ProbabilityandStatistics.html
[2] www.statsoft.com/textbook/
[3] www.wikipedia.org/
[4] www.mathwave.com/articles/distribution_fitting.html

[5] www.uah.edu/stat/special
[6] Dudewicz & Mishra (1988)
[7] Meyer (1970)

[8] Pfeiffer (1978)
[9] DeGroot (1989)
[10] Glantz & Kissell (2014)
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Chapter6
Linear Regression Models

INTRODUCTION
Regression analysis is a statistical technique used to model a relationship
between a dependent variable (known as the output variable, response
variable, or simply the y variable) and a set of independent variables or
variable (known as the explanatory factors, predictor variables, or simply
the x variables). The independent y variable is also referred to as the LHS
variable and the x variable is referred to as the RHS of the equation. The
goal of performing regression analysis is to uncover a set of statistically
significant x- variables and the sensitivity of the y variable to these input
variables. We are interested in learning how the y variable will change given
a change in the x variable. This sensitivity is known as the model betas and
is denoted as b. After a statistically significant relationship is uncovered,
analysts can forecast future outcome events.

Regression analysis is used in finance for many different purposes. For
example, regression analysis is used for asset pricing models, the capital
asset pricing model and arbitrage pricing theory, price prediction and
scenario analysis, risk modeling, volatility forecasting, and Monte Carlo
simulation.

More recently, regression models have made their way into the algorithmic
trading arena where they are used for transaction cost analysis, market
impact estimation, and portfolio optimization.

The usage of regression analysis in trading and finance serves four main
purposes:

1. Determining a statistically significant relationship between the y variable
and x variable(s).

2. Estimating model parameters, b.
3. Forecasting future y values.
4. Performing what-if and scenario analysis to understand how the y values

will change given different sets of x input variables.

Algorithmic Trading Methods, Second Edition. https://doi.org/10.1016/B978-0-12-815630-8.00006-5
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In this chapter, we present four different regression analysis techniques:

n Linear regression
n Log-linear regression
n Polynomial regression
n Fractional regression

These models are illustrated in Fig. 6.1. Fig. 6.1A is a linear relationship
with the form y ¼ b0 þ b1x1. Notice that this equation follows the familiar
shape of a straight line. Fig. 6.1B shows a log relationship between
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dependent variable y and independent variable x. The form of this equation is
y ¼ b0 þ b1 ln(x1). Fig. 6.1C shows a polynomial relationship between
dependent variable y and a single x variable. The equation is
y ¼ b0 þ b1x þ b2x

2 þ b3x
3. Fig. 6.1D shows a fractional polynomial rela-

tionship between y and x. This equation is y ¼ b0 þ b1x þ b2x
0.5 þ b3x

1.5.

The difference between the polynomial regression model and fractional
regression model is that the polynomial model can include any value of
x, including both positive and negative values, but it can only have positive
integer exponents. The fractional polynomial model can have any exponent
value, including positive and negative values, and both integers and
fractions, but the fractional model is only defined for a positive value of x.
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Linear Regression Requirements
A proper regression model and analysis needs to satisfy seven main
assumption properties. These are explained in detail in Gujarati (1988),
Kennedy (1998), and Greene (2000).

The main assumptions of the linear regression model are:

A1. Linear relationshipdbetween dependent variable and model
parameters:

y ¼ b0 þ b1x1 þ.þ bkxk þ e

A2. Unbiased parameter valuesdthe estimated parameter values are unbi-
ased estimates of the turn parameter values and satisfy the following:

E(b) ¼ b0, E(b1) ¼ b1, ., E(bk) ¼ bk

A3. Error term mean zerodthe expected value of the error term is zero:

EðeÞ ¼ 0

A4. Constant variancedeach error term has the same variance, e.g., no
heteroskedasticity:

VarðekÞ ¼ s2 for all k

A5. Independent error t termdno autocorrelation or correlation of any
degree:

E(ek ek�t) ¼ 0 for all lagged time periods t

A6. Errors are independent of explanatory factors:

Cov(e, xk) ¼ 0 for all factors k

A7. Explanatory factors are independent:

Cov(xj, xk) ¼ 0 for all factors j and k

Regression Metrics
In performing regression analysis and evaluating the model, we need the
following set of statistical metrics and calculations:

bk ¼ model parameter valuesdestimated sensitivity of y to factor k
e ¼ regression errorddetermined from the estimation process
Se(bk) ¼ standard error of the estimated parameter bk
Syx ¼ standard error of the regression model using the set of explanatory
factors
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R2 ¼ goodness of fit (the percentage of overall variance explained by the
model)
T-stat ¼ critical value for the estimated parameter
F-stat ¼ critical value for the entire model

To assist in our calculations, and to make the math easier to follow, we
introduce the following terms:

Total sum of squares: the sum of the squared difference between the actual
y value and the average y value:

SST ¼
X
n

i¼ 1

�

yi � yi
�2

Regression sum of squares: the sum of the squared difference between the
predicted by value and the average y value:

SSR ¼
X
n

i¼ 1

�

byi � yi
�2

Error sum of squares: the sum of the squared difference between the pre-
dicted by value and the actual y value:

SSE ¼
X
n

i¼ 1

�

yi � byi
�2

Mean square regression: the sum of the squared difference between the
predicted by value and the average y value divided by the number of factors k:

MSR ¼
Pn

i¼1

�

byi � yi
�2

k
¼ SSR

k

Mean sum of square errors: the sum of the squared error divided by the
degrees of freedom:

MSE ¼
Pn

i¼1

�

yi � byi
�2

k
¼ SSE

n� k � 1

Sum of squared X: the sum of the squared difference between the actual xk
value and its average value. For a simple linear regression model there is
only one x variable:

SSXk ¼
X
n

i¼ 1

ðxki � xkÞ2
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Sum of squared Y: the sum of the squared difference between the actual y
value and the average y value:

SSY ¼
X
n

i¼ 1

�

yi � yi
�2

Sum of squared XY: the sum of the squared difference for x and y
multiplied:

SSXkY ¼
X
n

i¼ 1

ðxki � xkÞ2
�

yi � yi
�2

LINEAR REGRESSION
There are two forms of linear regression models: simple linear regression
and multiple linear regression models. In a scenario with only a single in-
dependent predictor variable the regression analysis is a simple linear
regression model. In a scenario with more than one independent variable
the regression model analysis is a multiple linear regression model.

These are described as follows:

True Linear Regression Model
The true linear relationship model has the form:

y ¼ b0 þ b1x1 þ.þ bkxk þ ε

Here we have

y ¼ actual dependent value
xk ¼ kth explanatory factor
b0 ¼ actual constant term
bk ¼ actual sensitivity of y to factor xk
ε ¼ random market noise

In practice and in industry we are not provided with the true linear regres-
sion model, explanatory factors, or parameter values. We as analysts need to
determine a significant set of explanatory factors and estimate the parameter
values via statistical estimation. These statistical techniques are explained
below.

Simple Linear Regression Model
A simple linear model has the form:

y ¼ b0 þ b1x1 þ e
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The simple linear regression model, i.e., the estimation regression model,
has the form:

by ¼ b0 þ b1x1

Here we have

y ¼ actual dependent value
by ¼ estimated dependent variable
x1 ¼ explanatory factor
b0 ¼ intercept term
b1 ¼ sensitivity of y to factor x
e ¼ regression error term

The regression error term, e, is the difference between the actual y value and
the estimated by value. It also signifies the quantity of y that is not explained
by the explanatory factors. The regression error is calculated as follows:

e ¼ y� by

Solving the Simple Linear Regression Model
The goal of regression analysis is to calculate the best fit regression equation
so that that model can be used for analysis and forecasting needs. Solving
the simple linear regression model is a three-step process consisting of:

Step 1: Estimate Model Parameters.

Step 2: Evaluate model performance statistics.

Step 3: Test for statistical significance of factors.

Step 1: Estimate Model Parameters
The linear regression model parameters are estimated using the ordinary
least squares (OLS) technique. This process is as follows:

1. Define a loss function L to be the sum of the squared error for all obser-
vations as follows:

L ¼
X
n

i¼ 0

�

yi � byi
�2

2. Substitute the actual regression equation for by as follows:

L ¼
X
n

i¼ 0

ðyi � ðb0 þ b1x1ÞÞ2
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This can be rewritten as follows:

L ¼
X
n

i¼ 0

ðyi � b0 � b1x1Þ2

3. Estimate model parameters via finding first-order conditions for all
parameters:

vL

vb0
¼ 2

X

ðy� b0 � b1x1Þð�1Þ ¼ 0

vL

vb1
¼ 2

X

ðy� b0 � b1x1 Þð�x1Þ ¼ 0

4. Simplify the equations and bring the constant term to the RHS. This re-
sults in a system of linear equations:

b0
X

1þ b1
X

x1 ¼
X

y

b0
X

x1 þ b1
X

x21 ¼
X

x1y

5. Calculate the reduced matrix form of the set of linear equations. This is
used to simplify the mathematics required to solve for the model. The
reduced matrix form of the simple linear regression model is:

"

n
P

x1
X

x1
P

x21

��

b0
b1

�

¼
�

X

y
X

x1y

#

Notice that the upper right value is n because
P

1 ¼ n.

6. Solve for model parameters b0 and b1.

Here we have two equations and two unknowns. The parameters can be
solved via many different techniques such as substitution, row reduction,
Gaussian elimination, Cramer’s rule, as well as matrix multiplication
techniques.

The solution is:

b0 ¼ y� b1x1

b1 ¼
Pn

i¼1ðx1i � x1Þ
�

yi � y
�

Pn
i¼1ðx1i � x1Þ2

Step 2: Evaluate Model Performance Statistics
The next step is to compute the model performance statistics. This consists
of computing the R2 goodness of fit and the Syx standard error of the regres-
sion model. These are computed as follows:
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Standard Error of the Regression Model

Syx ¼
ffiffiffiffiffiffiffiffiffiffiffi

SSE

n� 2

r

R2 Goodness of Fit

Syx ¼ 1� SSE

SST
¼ SSR

SST

Step 3: Test for Statistical Significance of Factors
We perform a hypothesis test to determine if the factors are statistically sig-
nificant and if they should be included in the regression model. This step
consists of calculating the T-stat and F-stat. These are calculated as follows:

T-test: Hypothesis Test:

TStatðb1Þ ¼ b1
Seðb1Þ

where

Seðb1Þ ¼ Syx
ffiffiffiffiffiffiffiffiffiffi

SSX1

p

F-test: Hypothesis Test:

FStatðb1Þ ¼ MSR

MSE
¼ SSR=1

SSE=ðn� 1Þ
For a simple linear regression model, it is redundant to perform both a T-test
and an F-test of the data. If we find that the x variable is statistically signif-
icant from the T-test we will always reach the same conclusion using the F-
test and vice versa. Thus for a simple linear regression analysis, we will often
only perform a T-test. For a multiple linear regression analysis we need to
perform both T-test and F-test analyses.

Example: Simple Linear Regression
An analyst is asked to calculate the following simple linear regression to es-
timate price returns y from a variable x1:

by ¼ b0 þ b1x1

The underlying data for this analysis are shown in Table 6.1 and the OLS
regression results are shown in Table 6.2.
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Table 6.1 Linear Regression Data.

Month Y X1 X2 X3

1 0.0206 0.0350 �0.0156 �0.0502

2 0.0429 0.0140 0.0011 0.0120

3 0.0871 0.0311 �0.0151 0.0555

4 0.0159 0.0342 �0.0115 �0.0398

5 �0.0080 0.0092 �0.0306 0.0327

6 �0.0605 �0.0232 �0.0098 0.0200

7 0.0349 0.0279 �0.0331 �0.0184

8 0.0790 0.0622 0.0060 �0.0972
9 0.0048 0.0247 �0.0271 0.0468

10 �0.0308 �0.0082 0.0182 0.0524

11 0.0108 �0.0129 �0.0046 0.0242

12 0.0516 0.0053 �0.0142 0.0439

13 0.0088 �0.0145 0.0160 0.1526

14 0.0248 0.0072 �0.0180 0.0660

15 0.0290 0.0373 0.0010 �0.0162

16 0.0720 0.0358 0.0001 �0.0607
17 0.0160 �0.0276 0.0196 �0.0093

18 0.1161 0.0655 0.0088 �0.0857

19 0.0163 0.0182 0.0003 �0.0845

20 0.0201 0.0205 0.0056 �0.0551

21 �0.0328 �0.0179 �0.0323 �0.0746

22 0.0146 �0.0018 �0.0096 0.0908

23 0.0162 0.0204 �0.0374 0.0288

24 0.0404 0.0012 �0.0084 0.0847
25 0.0434 0.0362 �0.0166 �0.0595

26 0.0633 0.0537 �0.0572 0.0125

27 �0.0215 0.0183 �0.0305 �0.0275

28 0.0299 0.0377 �0.0007 �0.0339

29 0.0563 0.0051 �0.0008 0.0465

30 0.0723 0.0506 0.0449 �0.0564

31 �0.0259 �0.0149 �0.0058 0.0619

32 �0.0062 0.0064 �0.0044 0.0261
33 0.1164 0.0856 0.0239 0.0042

34 �0.0318 0.0076 �0.0454 0.0013

35 0.0242 0.0113 �0.0309 �0.0170

36 0.0544 0.0300 0.0150 0.0496
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This regression has R2 ¼ 0.585198, which is a very strong goodness of fit
and has a regression error of Syx ¼ 0.026591. The x1 variable is statistically
significant with T-stat ¼ 6.925805, which is significant at the p-value �
0.001. Because the model has a strong goodness of fit and the variables
are significant, the model can be used to predict price returns.

The best fit regression prediction equation is:

by ¼ 0:004574þ 1:191801$x1

Therefore if we have x1 ¼ 0.025, the expected y price change is:

by ¼ 0:004574þ 1:191801$0:025 ¼ 0:034369

Multiple Linear Regression Model
A multiple linear model has the form:

y ¼ b0 þ b1x1 þ b2x2 þ.þ bkxk þ e

The simple linear prediction regression model has the form:

by ¼ b0 þ b1x1 þ b2x2 þ.þ bkxk

Table 6.2 Simple Linear Regression Output.

Regression Statistics

Multiple R 0.764982

R Square 0.585198
Adjusted R Square 0.572998

Standard Error (Syx) 0.026591
Observations 36

ANOVA

df SS MS F Significance F

Regression 1 0.033916 0.033916 47.966780 5.5522
Residual 34 0.024040 0.000707

Total 35 0.057956

Coefficients Std Error T-Stat P-Value Lower 95% Upper 95%

Intercept 0.004574 0.005471 0.836003 0.40899 �0.006545 0.015693

X1 1.191801 0.172081 6.925805 5.5522 0.842090 1.541512
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Here

y ¼ actual dependent value

by ¼ estimated dependent variable

xk ¼ kth explanatory factor

b0 ¼ intercept term

bk ¼ sensitivity of y to factor xk

e ¼ regression error term

The regression error term, e, is the difference between the actual y value and
the estimated by value. It also signifies the quantity of y that is not explained
by the explanatory factors. The regression error is calculated as follows:

e ¼ y� by
Notice that this model is the same as the simple linear regression model but
with additional parameters and explanatory factors.

Solving the Multiple Linear Regression Model
The goal of regression analysis is to calculate the best fit regression equation
so that that model can be used for analysis and forecasting needs. Solving
the simple linear regression model is a three-step process consisting of:

Step 1: Estimate model parameters.

Step 2: Calculate model performance statistics.

Step 3: Test for statistical significance of factors.

Step 1: Estimate Model Parameters
The linear regression model parameters are estimated using the OLS tech-
nique. This process is as follows:

1. Define a loss function L to be the sum of the squared error for all obser-
vations as follows:

L ¼
X
n

i¼ 0

�

yi � byi
�2

2. Substitute the actual regression equation for by as follows:

L ¼
X
n

i¼ 0

ðyi � ðb0 þ b1x1 þ.þ bkxkÞÞ2
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This can be rewritten as follows:

L ¼
X
n

i¼ 0

ðyi � b0 � b1x1 �.� bkxkÞ2

3. Estimate model parameters via finding first-order conditions for all
parameters:

vL

vb0
¼ 2

X

ðy� b0 � b1x1 �.� bkxkÞð�1Þ ¼ 0

vL

vb1
¼ 2

X

ðy� b0 � b1x1 �.� bkxk Þð�x1Þ ¼ 0

«

vL

vbk
¼ 2

X

ðy� b0 � b1x1 �.� bkxk Þð�xkÞ ¼ 0

4. Simplify the equations and bring the constant term to the RHS. This re-
sults in a system of linear equations:

b0
X

1þ b1
X

x1 þ.þ bk
X

xk ¼
X

y

b0
X

x1 þ b1
X

x21 þ.þ bk
X

x1xk ¼
X

x1y

«

b0
X

xk þ b1
X

x1xk þ.þ bk
X

x2xk ¼
X

xky

5. Calculate the reduced matrix form of the set of linear equations. This is
used to simplify the mathematics required to solve for the model. The
reduced matrix form of the simple linear regression model is:

2

6

6

6

4

n
P

x1 .
P

xk
X

x1
P

x21 .
P

x1xk

« « 1 «
X

xk
P

x1xk .
P

x2k

3

7

7

5

2

6

6

4

b0
b1
«
bk

3

7

7

5

¼

2

6

6

4

X

y
X

x1y

«
X

xky

3

7

7

7

5

6. Solve for model parameters.

In the reduced matrix form we have k-equations and k-unknown. To solve
for these parameter values, it is required that the x variables be independent.
Otherwise, it is not possible to solve this system of equations. In mathema-
ticians’ speak, the requirement is that the matrix has full rank.
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These parameter values can be solved via numerous different techniques
such as substitution, row reduction, Gaussian elimination, Cramer’s rule,
as well as matrix multiplication techniques.

The solution for a two-variable three-parameter model is:

b0 ¼ y� b1x1 � b2x2

b1 ¼ ðP yix1iÞ
�P

x22i
�� ðP yix2iÞð

P

x1ix2iÞ
ðP x21iÞð

P

x22iÞ � ðP x1ix2iÞ2

b2 ¼ ðP yix2iÞ
�P

x21i
�� ðP yix1iÞð

P

x1ix2iÞ
ðP x21iÞð

P

x22iÞ � ðP x1ix2iÞ2

Step 2: Calculate Model Performance Statistics
The next step is to compute the model performance statistics. This consists
of computing the R2 goodness of fit and the Syx standard error of the regres-
sion model. These are computed as follows:

Standard Error of the Regression Model

Syx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE

n� k � 1

r

R2 Goodness of Fit

Syx ¼ 1� SSE

SST
¼ SSR

SST

Step 3: Test for Statistical Significance of Factors
We perform a hypothesis test to determine if the factors are statistically sig-
nificant and if they should be included in the regression model. This step
consists of calculating the T-stat and F-stat. These are calculated as follows:

T-test: Hypothesis Test:

TStatðb1Þ ¼ b1
Seðb1Þ

where

Seðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

x22i
ðP x21iÞð

P

x22iÞ � ðP x1ix2iÞ2
s

$Syx
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And

TStatðb2Þ ¼ b2
Seðb2Þ

where

Seð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

x21i
ðP x21iÞð

P

x22iÞ � ðP x1ix2iÞ2
s

$Syx

F-test: Hypothesis Test:

FStat ¼ MSR

MSE
¼ SSR=k

SSE=ðn� kÞ
For a simple linear regression model, it is redundant to perform both a T-test
and an F-test of the data. However, it is required to perform both a T-test and
an F-test with a multiple linear regression. A regression can only be stated to
be statistically significant if both T-test and F-test are accepted at the desired
significance level. A 5% significance, e.g., 95% confidence interval, is the
more common significance level, but analysts need to define these levels
based on their needs.

Example: Multiple Linear Regression
An analyst is asked to revisit the previous simple linear regression example
above, and include two additional explanatory variables x2 and x3. These
data are shown in Table 6.1. This multiple regression model has the form:

by ¼ b0 þ b1x1 þ b2x2 þ b2x3

The regression results are show in Table 6.3.

At first glance, this regression appears to be an improvement over the sim-
ple linear regression with only one input variable. For example, this model
has higher R2 ¼ 0.674 compared to R2 ¼ 0.585, and a smaller regression er-
ror Syx ¼ 0.0243 compared to Syx ¼ 0.0266. The model has a significant
F-stat but the x3 variable is not significant at a ¼ 0:05 because the
jT-statj < 2 and the p-value > 0.05. Therefore variable x3 is not a significant
predictor of y.

It is important to note that if a variable is not found to be significant, then
analysts needs to eliminate that variable from the regression data and rerun
the regression analysis. It is not correct to use the results from a regression
analysis where a variable is found to be insignificant.
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Therefore we must rerun this regression analysis using only x1, x2. This
model is:

by ¼ b0 þ b1x1 þ b2x2

The results from this regression are shown in Table 6.4.

Analysis of this regression is also an improvement over the simple linear
regression with only one input variable. This model has higher
R2 ¼ 0.6456 compared to R2 ¼ 0.585, and a smaller regression error
Syx ¼ 0.0249 compared to Syx ¼ 0.0266. The model has a significant F-
stat and significant T-stat for all variables. Therefore this is an acceptable
regression model.

The best fit regression prediction equation is:

by ¼ 0:009382þ 1:146426$x1 þ 0:0476859$x2

Therefore if we have x1 ¼ 0.025 and x2 ¼ 0.005, the expected y price
change is:

by ¼ 0:009382þ 1:146426$0:025 þ 0:0476859$0:005 ¼ 0:040427

Table 6.3 Multiple Linear Regression Output With Three Variables (Variable X3 is Insignificant).

Regression Statistics

Multiple R 0.820723

R Square 0.673587
Adjusted R Square 0.642986

Standard Error (Syx) 0.024314
Observations 36

ANOVA

df SS MS F Significance F

Regression 3 0.039039 0.013013 22.011754 6.383118
Residual 32 0.018918 0.000591

Total 35 0.057956

Coefficients Std Error T-Stat P-Value Lower 95% Upper 95%

Intercept 0.006153 0.005721 1.075533 0.29017893 �0.005500 0.017807

X1 1.290985 0.180894 7.136683 4.2360216 0.922516 1.659455

X2 0.470088 0.196004 2.398355 0.0224714 0.070840 0.869336

X3 0.135790 0.081979 1.656401 0.10741556 �0.031196 0.302776
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MATRIX TECHNIQUES
In matrix notation, the true regression model is written as:

y ¼ Xbþ ε

The estimation regression model is:

by ¼ Xb

The vector of error terms (also known as vector of residuals) is then:

e ¼ y� Xb

Estimate Parameters
The parameters of our regression model are estimated via OLS as follows.
This is as follows:

Step 1. Compute the residual sum of squares:

eTe ¼ ðy� XbÞTðy�XbÞ
Step 2. Estimate the parameters bb via differentiating and solving for the first-
order condition yields:

b ¼ ðXTXÞ�1XTy

Table 6.4 Multiple Linear Regression Output With Two Significant Variables (All Variables are Significant).

Regression Statistics

Multiple R 0.803493

R Square 0.645600
Adjusted R Square 0.624122

Standard Error (Syx) 0.024948
Observations 36

ANOVA

df SS MS F Significance F

Regression 2 0.037417 0.018708 30.057608 3.68671E-08
Residual 33 0.020540 0.000622

Total 35 0.057956

Coefficients Std Error T-Stat P-Value Lower 95% Upper 95%

Intercept 0.009382 0.005519 1.699894 0.09855929 �0.001847 0.020611

X1 1.146426 0.162581 7.051400 4.5367 0.815652 1.477200

X2 0.476859 0.201072 2.371581 0.0237011 0.067775 0.885944
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Compute Standard Errors of b
This is calculated by computing the covariance matrix of bb. We follow the
approach from Greene (2000)and Mittelhammer, Judge, and Miller (2000).
This is as follows:

Step 1. Start with the estimated b from above and substitute for y:

b ¼ ðXTXÞ�1XTy ¼ ðXTXÞ�1XTðXbþ eÞ ¼ ðXTXÞ�1XTXbþ ðXTXÞ�1XTe

¼ Ibþ ðXTXÞ�1XTe ¼ bþ ðXTXÞ�1XTe

Therefore our estimated parameters are:

b ¼ bþ ðXTXÞ�1XTe

Step 2. Computed expected bb as follows:

EðbÞ ¼ E
�

bþðXTXÞ�1XT
ε

�

¼ EðbÞ þ E
�

ðXTXÞ�1XTe
�

¼ EðbÞ þ ðXTXÞ�1XTEðeÞ
¼ bþ ðXTXÞ�1XT$0¼ b

Therefore we have:

EðbÞ ¼ b

which states that b is an unbiased estimate of b.

Step 3. Compute the covariance matrix of b as follows:

CovðbÞ ¼ E
�ðb� bÞðb� bÞT� ¼ E

��

ðXTXÞ�1XTe
��

ðXTXÞ�1XTe
�T�

¼ E
�

ðXTXÞ�1XTeeTXðXTXÞ�1
�

¼ ðXTXÞ�1XTEðeeTÞXðXTXÞ�1

¼ ðXTXÞ�1XT
�

s2 $ I
�

XðXTXÞ�1

¼ s2$ðXTXÞ�1XTXðXTXÞ�1 ¼ s2$IðXTXÞ�1

¼ s2ðXTXÞ�1

It is important to note that if EðeeT Þss2$I, then the data are heteroskedas-
tic, e.g., it is not constant variance and violates one of our required regression
properties.

The standard error of the parameters is computed from the above matrix:

SeðbÞ ¼ diag

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2ðXTXÞ�1
q
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R2 Statistic

R2 ¼ b0X 0y� ny2

y0y� ny2

The coefficient of determination will be between 0 and 1. The closer the
value to one, the better the fit of the model.

F-Statistic

F ¼
�

b0X 0y� ny2
�

=ðk � 1Þ
ðy0y� b0X 0yÞ=ðn� kÞ

LOG REGRESSION MODEL
A log-regression model is a regression equation where one or more of the
variables are linearized via a log transformation. Once linearized, the regres-
sion parameters can be estimated following the OLS techniques above. It
allows us to transform a complex nonlinear relationship into a simpler linear
model that can be easily evaluated using direct and standard techniques.

Log-regression models can be grouped into three categories: (1) linear-log
model where we transform the x explanatory variables using logs, (2) log-
linear model where we transform the y-dependent variable using logs, and
(3) log-log model where both the y-dependent variable and the x explanatory
factors are both transformed using logs.

For example, if Y and X refer to the actual data observations, then our four
categories of log transformations are:

1. Linear: Y ¼ b0 þ b1$X þ e
2. Linear-log: Y ¼ b0 þ b1$log(X) þ e
3. Log-linear: log(Y) ¼ b0 þ b1$X þ e
4. Log-log: log(Y) ¼ b0 þ b1$log(X) þ e

As stated, the parameters of these models can be estimated directly from our
OLS technique provided above.

Example: Log-Transformation
Let the relationship between the dependent variable Y and independent vari-
ables X1 and X2 follow a power function as follows:

y ¼ b0x
b1
1 x

b2
2 ε

where lnðεÞwN
�

0; s2
�

.
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It would be very difficult to estimate and solve for the model parameters b0,
b1, b2 via OLS and find the first-order conditions. This is because there is a
nonlinear relationship between the dependent variable y and the explanatory
variables x and parameters b0, b1, b2. However, it is possible to simplify this
model into a linearized form by taking a log transformation of the data as
follows:

Step 1: Take logs of both sides (natural logarithms):

lnðyÞ ¼ ln
�

b0x
b1
1 x

b2
2 ε

�

Step 2: Simplify the RHS:

lnðyÞ ¼ lnðb0Þ þ b1 lnðx1Þ þ b2 lnðx2Þ þ lnðεÞ
Step 3: Rewrite the equation using new parameters a0; a1; a2:

lnðyÞ ¼ a0 þ a1 lnðx1Þ þ a2 lnðx2Þ þ e

Step 4: Run OLS regression on the transformed equation to solve for
a0; a1; a2.

This model can now be solved using the techniques above. We convert from
a0; a1; a2 to b0, b1, b2 as follows:

b0 ¼ exp

�

a0 þ 1
2
$ S2

yx

�

b1 ¼ a1

b2 ¼ a2

It is important to note here that the constant parameter b0 requires an adjust-
ment using the regression variance term, e.g., the regression error term
squared. This is a required step in these transformations of a log-normal
distribution.

For example, if Y has a log-normal distribution with mean u and variance v2,
that is,

ywlogNormal
�

u; v2
�

then the expected value of E(y) is calculated as follows:

EðlogðyÞÞ ¼ uþ 1
2
$v2

And therefore we have:

y ¼ e

	

uþ1
2$v

2
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Example: Log-Linear Transformation
An analyst is using a power function model to estimate market impact cost.
This model is as follows:

y ¼ b0x
b1
1 x

b2
2 ε

where y is the dependent variable, x1 and x2 are the independent explanatory
factors, b0, b1, b2 are the model parameters, and ε is the error term with
lnðεÞwN

�

0; s2
�

. These model parameters can be estimated using a log
transformation of the data as follows:

lnðyÞ ¼ lnðb0Þ þ b1 lnðx1Þ þ b2 lnðx2Þ þ lnðεÞ
Then, we can apply OLS techniques to the following model using adjusted
parameter variables to make the process easier to follow. This is:

lnðyÞ ¼ a0 þ a1 lnðx1Þ þ a2 lnðx2Þ þ e

where ewN
�

0; s2
�

.

If the results of the log-transformed regression analysis are a0 ¼ 6:25,
a1 ¼ 0:52, a2 ¼ 0:76, and Syx ¼ 0.21, then power function regression pa-
rameters are calculated as follows:

b0 ¼ a0 ¼ exp


6:25 þ0:5 $0:212
� ¼ 529:96, b1 ¼ a1 ¼ 0:52,

b2 ¼ a2 ¼ 0:76, and Syx ¼ 0.25.

Therefore the power function best fit prediction equation is:

y ¼ 529:56$x0:521 $x0:762

POLYNOMIAL REGRESSION MODEL
A polynomial regression model is a model where the dependent variable is a
function of a single independent variable x. A polynomial regression model
has the form:

by ¼ b0 þ b1xþ b2x
2 þ b3x

3 þ.þ bhx
h

In this model, the input variable x can be any value (both positive and nega-
tive) but the exponent of x must be positive integer values.

A polynomial model has many applications in trading and finance. For
example, a polynomial function of degree h ¼ 2 is known as a quadratic
model and is used for portfolio optimization. A higher degree polynomial
such as h ¼ 3 is known as a cubic model and is used in finance to model
and optimize complex portfolios; it is also often used as a loss function in
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place of a linear constraint. A polynomial can also be used to approximate
more complex mathematical functions such as are used in algorithmic
trading and advanced portfolio optimization.

In a polynomial regression model there is a single x variable and multiple
explanatory factors that are functions of this x variable. For example, the
explanatory factors of this hth degree polynomial are (x, x2, x3, ., xh).
Above we stated that a regression analysis requires the explanatory factors
to be independent of one another. In the case of this polynomial, there is mul-
ticollinearity across all the factors. That is, the set of factors are all correlated.
However, because these factors are not perfectly correlated we are able to
solve for model parameters. In a situation where there is multicollinearity
embedded in the x variables, we might still be able to estimate parameters
and the best fit prediction model. The only issues that we cannot determine
are the true sensitivity and cause and effect between the dependent y variable
and x variables. For many of our needs, however, we may only need the pa-
rameters for prediction purposes.

It is important to note that the polynomial regression model is a linear
model because the dependent variable y is defined as a linear function of
the parameters. This allows us to estimate the model parameters using
OLS techniques.

For example, the following fractional regression model:

by ¼ b0 þ b1xþ b2x
2 þ b3x

3

has reduced matrix form determined from the first-order conditions. This
reduced matrix is:
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The parameter values b0, b1, ., bh can be solved via matrix algebra or via
Cramer’s rule.

FRACTIONAL REGRESSION MODEL
A fractional regression model, also referred to as a fractional polynomial
regression model, is a model where the dependent variable is a function
of a single independent variable x. The value of x in fractional regression
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models must be positive (e.g., x > 0) and the exponents can be any value
(positive or negative, and integer or fraction).

An example of a fractional regression model with both integer and frac-
tional exponents is:

by ¼ b0 þ b1xþ b2x
2 þ b3x

1=2

A more complex fraction regression model with additional fractional
exponent terms is:

by ¼ b0 þ b1xþ b2x
2 þ b3x

1=2 þ b4x
3=2 þ b5x

5=3

These fractional polynomial regression models have become increasingly
popular in finance and especially in algorithmic trading. These models
are used to estimate market impact cost and have been embedded in algo-
rithmic trading engines. These models are also being used as approxima-
tions to more advanced and complex equations. In many situations, these
fractional regression models provide an exception level of accuracy and
they can be solved exponentially faster than the more complex models,
thus proving very beneficial for algorithmic trading, optimization, and
many machine learning algorithms.

Like the polynomial regression model, the fractional polynomial model is a
linear model because the dependent variable y is defined as a linear function
of the parameters. This allows us to estimate the model parameters using
OLS techniques.

For example, the following fractional regression model:

by ¼ b0 þ b1xþ b2x
2 þ b3x

1=2

has reduced matrix form determined from the first-order conditions. This
reduced matrix is:
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The parameter values b0, b1, ., bh can be solved via matrix algebra or via
Cramer’s rule.
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Chapter7
Probability Models

INTRODUCTION
A probability model is a regression model that maps the outcome of the
dependent variable yto values between 0 and 1. These y values correspond
to the probability that the event will occur. Probability models are used in
many different areas of finance and other professions. For example, proba-
bility models are used in finance to estimate the probability of bond defaults
or credit rating change, and in algorithmic trading to determine the probabil-
ity of filling an order at a specified price and at a specified destination. Prob-
ability models are also used in the sports world to estimate the probability
that a team will win a game or beat a specified sporting line. For example,
what is the probability that a country will win the World Cup or a team
will win the Super Bowl.

A probability model provides the probability estimate of observing a
specific outcome or the probability of achieving a specified value or better.
In all these situations, however, the output variable y can only take on values
between 0 and 1.

The more common types of probability models used in real-world applica-
tions are the exponential model (power function), logit model, and probit
model. Additionally, analysts at times will use more complex models
such as the inverse gamma function and/or inverse beta functions to solve
the more complicated problems that require additional freedom to accom-
modate moments such as skewness and kurtosis.

DEVELOPING A PROBABILITY MODEL
The process for developing a probability model is as follows.

n Define the output data.
n Determine the appropriate probability model function and model to

ensure the prediction model results will be strictly between zero and one.
n Determine a statistically significant set of explanatory factors, e.g., x

variables.
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These are discussed as follows:

Outcome Variable: The dependent outcome variable is usually denoted by
y or p. The output variable data used to calibrate a probability models can
either be a probability value between zero and one, or a binary value that
is either zero or one. For example, a probability model will have
0 � y � 1 and represents the probability of observing a specific outcome
event or observing a specific event or doing better: the probability of buying
shares at a price of $30/share of lower, or the probability of selling shares at a
price of $50/share or higher. The binary output data value where y˛{0, 1}
indicates the event occurred y ¼ 1 or the event did not occur y ¼ 0.

Probability Model Formulation: A probability model is written mathemat-
ically as:

f ðxÞ ¼ y

In this notation, the expression f(x) represents the model equation and x
denotes the explanatory factor or factors used to predict the expected prob-
ability outcome y.

Three common model formulations used for probability regression model
are Power Function, Logit Model, and Probit functions. These are written
mathematically as follows:

n Power Function: f ðxÞ ¼ x1
x1þx2

n Logit Model: f ðxÞ ¼ 1
ð1þe�xÞ

n Probit Model: FðxÞ ¼
Z z

�N

1
ffiffiffiffiffiffi

2p
p

s
$exp

�

z2
�

2s2
�

In practice, we can use any model or functional form that bounds the output
value to be between zero and one. In fact, the inverse function of any prob-
ability distribution can be used as our probability regression model because
the resulting y values will also be between 0 and 1. For example, the probit
model is simply the inverse of the standard normal distribution.

Input Data: The input data used in our model are the explanatory factors,
e.g., the independent variables and serve the same purposes as they do
with linear regression models. That is, these are the variables that are used
to predict the outcome probabilities.

Determining the proper output data to use in a probability model is often a
very difficult task. This is because in many cases it is not as straight for-
ward to perform a statistical significance test as it is with linear regression
analysis. In this chapter, however, we provide analysts with techniques to
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evaluate the predictive power of explanatory factors and to determine if
they should be included in the prediction model or removed.

Comparison of Linear Regression Model to
Probability Model
n A regression model is used to find a linear relationship between a

dependent variable y and a set of independent variables x.
n The y variable can be any real value:

N� y � N

n A probability model is used to determine a relationship between a
dependent variable y and a set of independent variables x.

n The y variable can only be values between 0 and 1.

0� y � 1

A comparison of a linear regression model to a probability regression
model is shown in Figs. 7.1A and B. In this illustration, Fig. 7.1A shows
a linear relationship between the independent x-variable and the depen-
dent y-value. Notice that both the x- and y-variable can take on any
real value, e.g., �N � x � N and �N � y � N. Fig. 7.1B illustrates
a probability regression. Notice in this case that the y-value denoted as
probability will only be values between 0% and 100% while the x vari-
able can be any real number, that is, 0 � y � 1 and �N � x � N.

Power Function Model
The power model is based on the exponential distribution.

For example, let X and Y be random exponentially distributed variables with
parameters x and y. Then their probability distribution functions are:

f ðXÞ ¼ xe�xt ; t � 0

f ðYÞ ¼ ye�yt ; t � 0

Then, the probability that x > y is calculated as follows:

Pðx> yÞ ¼ x

xþ y

For any positive values for x > 0 and y > 0, this expression will always
be between 0 and 1. Therefore, we can use this formulation as a probabil-
ity mapping function to ensure our predictions are also between zero and
one.

Developing a Probability Model 177



Logit Model
The logit probability model is based on the logistic distribution. The formu-
lation has historically been used in the social sciences and medical fields
where researchers are interested in determining the likelihood of achieving
a certain outcome. With the advent of electronic and algorithmic trading, the
logistic model has gained momentum in finance and risk management for
predicting probability of execution, probability of default, or more simply,
the probability of success of failure.
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n FIGURE 7.1 Comparison of Linear Regression Model to Probability
Regression Model.
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The logistic function has form:

f ðzÞ ¼ 1
1þ e�z

with 0 � f(z) � 1. That is, the result from this model will always be between
0 and 1. In fact, any inverse probability model can be used as a mapping
function in probability models.

If z is a linear function of explanatory variables x as follows:

z ¼ b0 þ b1x1 þ b2x2 þ.þ bkxk

Then the logistic probability model has form:

gðxÞ ¼ 1

1þ e�ðb0 þ b1x1 þ.þ bkxkÞ

with 0 � g(x) � 1.

This is a very interesting formulation of a model. It basically says that we
can use any input value to determine a probability mapping.

Probit Model
The probit probability model is like the logit model described above but
incorporates a normal distribution rather than the logistic distribution.
The cumulative normal distribution for a random variable zwN

�

m; s2
�

is:

FðzÞ ¼
Z
z

�N

1
ffiffiffiffiffiffi

2p
p

s
$exp

�� ðz� mÞ2 = 2s2
�

With,

�N � z � N

0�FðzÞ � 1

Our random variable z can also be a linear function of several input explan-
atory variables such as:

z ¼ b0 þ b1x1 þ b2x2 þ.þ bkxk

Then, the probability of the event y being observed is then computed from
the inverse of the normal distribution. This is:

ProbðyÞ ¼ F�1ðzÞ
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The parameters of the probit model need to be computed via a nonlinear
method such as maximum likelihood estimates (MLE) or nonlinear optimi-
zation techniques. These parameters cannot be solved via ordinary least
squares (OLS).

Comparison of Logit and Probit Models
The logit probability model is similar to the probit model but has slightly
fatter tails and peaked means. The logit model, however, can be used to
approximate the cumulative normal distribution function for a specified
parameter l ¼ �1:7. This adjusted logit model is:

1
1þ expð� 1:70$zÞzFNðzÞ

An advantage of the logit model is that we can very easily calculate the
model parameters, and in many cases, we can calculate the parameters using
OLS techniques and a liner approach. This model also provides very similar
y values to the probit model. A disadvantage is that the logit model has a sin-
gle parameter value compared to a probit model with two parameters.

The biggest difficulty with working with probability models, as mentioned
above, is knowing the exact value outcome variable. In many cases we only
have data observations on whether an event occurred or did not occur.

Fig. 7.2 provides a comparison of the probit model to the logit model.
Fig. 7.2A shows the pdf of each function. Notice the slightly fatter tails
and peaked means. Fig. 7.2B shows the cdf of each function. As shown in
the figure, it is very difficult to differentiate between the two models.

Outcome Data
A difficulty associated with probability models is that the actual probability
values, e.g., y variable, is often not known and/or cannot be observed. This is
much different than a regression where the y variable is known and observ-
able. In the case where the probability of success is known, probability
modeling is much more direct. But in situations where the probability is
not known and cannot be observed, analysts must develop their models
based on either binary outcomes or derived probabilities such as through
grouping or other statistical processing techniques.

The observed values of probability models are not usually known with ac-
curacy which creates a problem for analysts. Analysts need to determine a
way to derive the value of the outcome variable y in many situations such as
a success or failure.
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In the situation where analysts assign probability based on a success or
failure we have:

y ¼
�

1 p

0 1� p

Here, y ¼ 1 denotes a success and y ¼ 0 denotes a failure, and p is the prob-
ability of success and 1�p is the probability of a failure. Notice that in this
situation, all we can observe is a binary outcome that is success ¼ 1 and
failure 0.
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n FIGURE 7.2 Comparison of Probit Model and Logit Model.
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Model Formulation
A probability model is written as follows:

y ¼ f ðb; xÞ þ ε

The dependent variable is estimated as follow:

EðyÞ ¼ f ðb; xÞ
since EðεÞ ¼ 0.

Mean
The mean of the probability model is computed by definition:

EðyÞ ¼
X

piyi ¼ p$1þ ð1� pÞ$0 ¼ p

Variance
The variance of the probability model is also computed by definition:

VðyÞ ¼ EðyÞ ¼
X

piðyi � EðyÞÞ2 ¼ p$ð1� pÞ

Grouping Data
In finance and other scientific fields, we are often only able to observe if an
event was a success or a failure. For example, we executed a trade at our
specified price or better, a company defaulted on a bond payment, and a
sports team won the game. But in finance, we often have a large abundance
of input data even if the outcome observation ins only binary. In these sit-
uations, we can group data into different bins or categories and compute the
probability of a success based on these observations.

Solving Binary Output Models
In a situation where the output data is binary as described above and where
we are not able to estimate these probabilities using bins, we can use
maximum likelihood estimation (MLE) techniques to determine the model
parameter values that will maximize the likelihood of observing all
outcomes.

These steps are as follows:

Step 1: Specify Probability Function
Let, fi(x) ¼ probability of observation a success in the ith observation, and

1�fi(x) ¼ probability of observation a failure in the ith observation, and
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That is,

FiðxÞ ¼
�

fiðxÞ if success
1� fiðxÞ if failure

In these cases, our function f(x) can be any of our probability models such as
the power function, logit model, or probit models.

Step 2: Set Up a Likelihood Function Based on
Actual Outcome Results for all Observations. For
Example, If We Have n Observations, the Loss
Function is Specified as Follows

L ¼ F1ðxÞ$F2ðxÞ$F3ðxÞ$.$Fn�1ðxÞ$FnðxÞ
The goal of MLE is to find parameter values that maximizes the likelihood
of observing all the outcome events.

If our observed results qualified as a success in observations i ¼ 1, 3, .. n
and qualified as a failure in observations i ¼ 2, ., n-1, then L is:

L ¼ f1ðxÞ$ð1� f2ðxÞÞ$f3ðxÞ$.$ð1� fn�1ðxÞÞ$fnðxÞ
Unfortunately, when we set out to solve a multiplicative expression
where each term is less than one the product of all these values falls
to zeros exceptionally quick thus making it extremely difficult to
solve the equation above. For example, if we multiple 0.5 10 times
(e.g., there are 10 games) 0.50^10�0.000,977 which is extremely small.
This value L also becomes exponentially smaller as the number of games
increases.

A solution around this data issues is to transform the above equation into
one using logs and thus turning a difficult to solve multiplicative expres-
sion into an easier to solve additive expression. Additionally, it is impor-
tant to note that maximizing the log transformation of this function L
will yield the same results as if we maximize the actual function L.

Therefore, we can rewrite our L into a log-loss function as follows:

LogL ¼ lnðf1ðxÞÞ þ lnðð1� f2ðxÞÞÞ þ lnðf3ðxÞÞ þ.

þ lnðð1� fn�1ðxÞÞÞ þ lnðfnðxÞÞ

Model parameters can then be determined via differentiation techniques and
also by nonlinear optimization techniques.
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In general, MLE seeks to maximize the loss function as follows:

L ¼
Y
n

i¼ 1

FiðxÞ

This is identical to maximizing the log-loss function as follows:

LogL ¼
X
n

i¼ 1

lnðFiðxÞÞ

SOLVING PROBABILITY OUTPUT MODELS
In situations where we have probability outcomes with 0 � y � 1 we can
use the logit model and solve for the model parameters using logistic regres-
sion analysis. In this case, the logistic regression model is a linearization of
the logit probability model, and the parameters are solved via OLS tech-
niques. This allows ease of calculations and it is much easier and more direct
to interpret the statistics of a linear model than it is for a probability or
nonlinear model.

For example, suppose that the probability of filling a limit order is known.
In this case, we can now determine a statistically significant set of explan-
atory factors x and the corresponding model parameters.

The logistic regression probability model is solved via the following steps:

(1) Start with the Logit Model with parameter z

f ðzÞ ¼ 1
1þ e�z

(2) Set the Logit Model equal to the probability p

1
1þ e�z

¼ p

(3) Calculate (1�p)

1� 1
1þ e�z

¼ e�z

1þ e�z
¼ ð1� pÞ

(4) Calculate the Wins Ratio by Dividing by (1�p)

1
1þ e�z

e�z

1þ e�z

¼ p

ð1� pÞ
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It is important to note that the expression p
ð1�pÞ is known as the wins

ratio or the odds ratio in statistics. This expression gives the ratio of
wins to losses. An important aspect of the wins ratios, as we show
below, is that it is always positive.

(5) This expression can be reduced to:

ez ¼ p

ð1� pÞ

(6) We can further reduce this expression by taking the natural logs of both
sides, thus, giving:

lnðezÞ ¼ ln

	

p

1� p




(7) Which yields:

z ¼ ln

	

p

1� p




(8) If z is a linear function of k independent variables, i.e.,
z ¼ b0 þ b1x1 þ. þ bkxk, then our expression yields:

b0 þ b1x1 þ.þ bkxk ¼ ln

	

p

1� p




This transformed Logit Model reduces to the linear logistic regression
model and it can now be solved using OLS regression techniques. For
example, if y is the natural log of the wins ratio and x is a set of explanatory
factor variables, we can calculate the corresponding model parameters by
solving our standard linear regression model:

by ¼ b0 þ b1x1 þ.þ bkxk

where,

y ¼ ln

	

p

1� p




Therefore, in situations where the probability of occurrence is known or can
be estimated we are able to solve for the parameters of our probability
model using linear regression and OLS techniques.
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EXAMPLES
Example 7.1 Power Function
An analyst wishes to develop a power function model to estimate the prob-
ability of executing a limit order using date from the central order book. The
analyst has data for 100 historical buy orders that were entered into the mar-
ket at the best bid price. The analyst denoted each order as a success if it did
execute in the market at the entered price and a failure if it did not execute in
the market at the entered price. The data set also includes the cumulative
number of buy shares at the best bid and the cumulative number of offer
shares in the limit order book at the time of the order entry. This data is
shown in Table 7.1.

The analyst formulates the following probability model:

PðTradeÞ ¼ b2$Sell Shares

b1$Buy Sharesþ b2$Sell Shares

The belief is that if there are more sell orders than buy order in the limit
order book at the time of the order entry there are overall more sellers in
the market. Thus, the higher the ratio of sell orders the higher the probabil-
ity of execution. This model includes parameters b1, b2 to denote the sensi-
tivity to buy orders and sell order, respectively.

This model is solved via MLE because the observation results or specified
as 1 ¼ success (e.g., order was traded) and 0 ¼ failure (order was not
traded). These results are:

A higher parameter value for sell shares compared to buy shares in this sit-
uation P(Trade) < 0.50 is an indication that sellers may be more eager to
execute their shares, and would correspond to a more aggression and
more urgent trading strategy.

The best fit power function model is written as:

PðTradeÞ ¼ 0:704366$Sell Shares
0:408619$Buy Sharesþ 0:704366$Sell Shares

Power Function Results

b1: 0.408,619

b1: 0.704,366
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Table 7.1 Limit Order Data.

Obs
Buy
Shares

Sell
Shares

Success/
Failure

Power Logit

Power
Probability

Logit
Probability

1 3700 8800 1 80% 93%

2 3500 3100 1 60% 54%

3 4500 1600 0 38% 31%

4 1200 6900 1 91% 93%
5 7400 3100 0 42% 25%

6 4500 1900 0 42% 34%

7 3300 5400 1 74% 78%

8 5800 9600 1 74% 91%

9 7800 7100 1 61% 64%

10 5900 8900 1 72% 88%

11 100 6800 1 99% 95%

12 1900 1500 0 58% 49%
13 6000 6300 1 64% 69%

14 5100 9700 1 77% 93%

15 5400 2600 0 45% 34%

16 6500 8600 1 70% 84%

17 2800 900 0 36% 36%

18 3100 2700 0 60% 53%

19 7100 3800 0 48% 34%

20 3300 4800 1 71% 73%
21 6700 5800 1 60% 58%

22 1700 4100 1 81% 77%

23 6200 8300 1 70% 83%

24 3600 3300 1 61% 56%

25 5800 7300 1 68% 78%

26 6200 800 0 18% 15%

27 2700 5300 1 77% 80%

28 5800 5500 1 62% 62%
29 3400 6300 0 76% 83%

30 6300 4600 0 56% 48%

31 6600 3000 0 44% 30%

32 1900 2400 0 69% 59%

33 4700 6800 0 71% 81%

34 100 600 1 91% 54%

35 3900 7500 1 77% 88%

36 3500 9000 1 82% 94%
37 6100 4000 0 53% 43%

Continued
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Table 7.1 Limit Order Data. continued

Obs
Buy
Shares

Sell
Shares

Success/
Failure

Power Logit

Power
Probability

Logit
Probability

38 3400 8600 1 81% 93%

39 6000 4600 0 57% 51%

40 2400 6500 1 82% 88%

41 4900 2900 0 50% 41%

42 2400 700 0 33% 37%

43 4600 9900 1 79% 94%

44 6200 9400 1 72% 89%
45 1300 3500 1 82% 74%

46 2800 8200 1 83% 93%

47 900 3900 1 88% 80%

48 6700 4500 0 54% 44%

49 5300 4600 1 60% 56%

50 7800 4100 1 48% 32%

51 5500 6100 0 66% 70%

52 7800 9200 1 67% 82%
53 5400 9800 1 76% 93%

54 5800 4900 1 59% 56%

55 5800 4000 1 54% 46%

56 1700 4400 1 82% 79%

57 2400 6400 0 82% 88%

58 1700 6800 1 87% 92%

59 5200 5400 0 64% 66%

60 700 3400 0 89% 77%
61 300 800 1 82% 55%

62 1100 7300 1 92% 94%

63 5000 6300 1 68% 75%

64 5200 1700 1 36% 27%

65 900 3100 1 86% 73%

66 400 7100 1 97% 95%

67 1800 5600 1 84% 86%

68 7300 6800 1 62% 64%
69 3000 5300 1 75% 79%

70 3500 8200 1 80% 92%

71 4100 3200 1 57% 51%

72 1000 8200 1 93% 96%

73 1100 4200 1 87% 81%

74 7300 5900 0 58% 55%

75 5000 1300 1 31% 25%
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This representation states the probability that an order will be executed in
the market. An order with a 50% probability or higher is more likely to
be executed than an order with a probability lower than 50%.

This model has a 75% accuracy rate. Accuracy is measured as a success when
the probability form above is P(Trade)�0.50 and the order is executed, and
when and the order is not executed. Table 7.1 additionally shows the calcu-
lated in-sample probability of executing the order using the power function
model and parameters from above for all 100 orders.

Table 7.1 Limit Order Data. continued

Obs
Buy
Shares

Sell
Shares

Success/
Failure

Power Logit

Power
Probability

Logit
Probability

76 5300 9400 1 75% 91%

77 5800 3900 1 54% 45%

78 7900 2200 0 32% 16%

79 1200 9900 1 93% 98%

80 2300 9400 1 88% 97%

81 7500 4600 1 51% 39%

82 7000 5100 0 56% 48%
83 5100 7800 1 72% 85%

84 6200 4400 0 55% 47%

85 3700 1200 0 36% 33%

86 5900 900 0 21% 17%

87 1700 5300 0 84% 85%

88 5200 3000 1 50% 40%

89 4300 8100 1 76% 89%

90 700 7500 1 95% 95%
91 7900 7500 0 62% 67%

92 2900 3000 1 64% 58%

93 4900 9700 0 77% 93%

94 7900 6600 1 59% 58%

95 3600 9000 1 81% 94%

96 4100 5900 1 71% 77%

97 2300 6000 1 82% 86%

98 3700 6100 0 74% 81%
99 5400 9000 1 74% 90%

100 3500 2100 1 51% 43%
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Example 7.2 Logit Model
An analyst performs a second probability analysis to determine the likeli-
hood of executing a buy order at the best bid price following Example
7.1 and Table 7.1. but using a logit model. This model has form:

y ¼ 1
1þ expf1ðb0 þ b1$Buy Sharesþ b2$Sell SharesÞg

This model is solved via MLE because the observation results or specified
as 1 ¼ success (e.g., order was traded) and 0 ¼ failure (order was not
traded). These results are:

For the logit model it is important to evaluate the signs of the model param-
eters. The positive sign for b2 which is the sensitivity to the quantity of sell
shares indicates that as the number of sell orders or seller shares increases
there is a higher probability of executing a buy limit order. Intuitively,
this makes sense because as there are more sellers than buyers in the market,
at some point the sellers will need to transact at the buyer’s price. A negative
sigh for the b1 parameters which is the sensitivity to the quantity of buy
shares indicates that as the number of buy order or buy shares increase
then the probability of executing buy order decreases. Intuitively this makes
sense because if there are more buy order than sell orders the buys will need
to compete for the sell orders. This follows directly from supply demand
economics.

The best fit logit model is written as:

y ¼ 1
1þ expf1ð � 0:075383� 0:000320$Buy Sharesþ 0:000441$Sell SharesÞg

This model has a 78% accuracy rate. Accuracy is measured as a success
when the probability form above is P(Trade)�0.50 and the order is
executed, and when P(Trade) < 0.50 and the order is not executed. Table 7.1
additionally shows the calculated in-sample probability of executing the or-
der using the logit probability model and parameters from above for all 100
orders.

Logit Model Results

b0: �0.075383

b1: �0.000320

b2: 0.000441
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COMPARISON OF POWER FUNCTION TO LOGIT
MODEL
Fig. 7.3 provides a comparison of the results from both the power function
and logit models for each order. Notice that in most cases the estimated prob-
abilities are extremely close, but for some orders and data the probabilities
can be different. The average difference between these two models is
0.00% but the standard deviation of difference is 10.32%. For the most
part, the model estimates are the same for probability of success from
20% to 85%. The largest differences appear to be the highest when probabil-
ity of success is >80% or <20%. It is important to note here that these dif-
ferences occur in the model tails. In statistical analysis, it is often the tail
events that provide the biggest difficulty during modeling and it is extremely
important for analysts to evaluate different approaches to determine the
model that works best for all data points and not only the most common
occurrences.

Example 7.3 Logistic Regression
An analyst at a different algorithmic trading firm takes a different approach
to the limit order model problem. Instead of collecting data for a historical
set of observations defined as a success or a failure, the analyst collects a
much larger data set. This data set consists of the buy-sell imbalance at
the best bid and ask price at the time of order entry and the previous
five-minute price change. The buy-sell imbalance provides the percentage
of total limit book volume that is buy volume and is calculated as follows:
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Buy� Sell Imbalance ¼ Buy Volume

Buy Volumeþ Sell Volume

The 5-mins price change is calculated as follows:

5Min Chg ¼ ln

	

Pt

Pt�5




Where Pt is the price at the current time and Pt�5 is the price 5 minutes
earlier.

The premise is that if there is momentum in the market and the stock price is
increasing then it will be more difficult to execute a buy limit order because
prices will be moving higher, and if the stock price is decreasing it will be
more difficult to execute a sell limit order because prices are moving lower.
In this case, the analyst has a large quantity of data that was grouped into
bins for analysis. These bins also allowed the analyst to calculate the prob-
ability of filling the buy limit order for each category. The grouped data for
this analysis is shown in Table 7.2.

The analysis was performed using a logistic regression analysis with form:

b0 þ b1$BuySell Imbalanceþ b2$5Min Price Change ¼ ln

	

p

1� p




The parameters of this model are estimated using ordinary least squares
regression and are shown in Table 7.3. This model has high goodness of
fit with R2 ¼ 0.8737. The explanatory factors for this model as statistically
significant at the a ¼ 0:05 level. This is shown in the logistics regression
results table in the T-Stat and Significance-F columns. It is important to
note here that standard error of this regression Syx ¼ 0.8007 is the standard
error of the estimate for ln

� p
1�p

�

and not the standard error for the predicted
probability. This is an important item when evaluating the model
performance.

The best fit logistic regression probability model has form:

z ¼ 2:9315� 7:6123$BuySell Imbalance� 14:0073$5Min Price Change

¼ ln

	

p

1� p




and,

p ¼ 1
1þ e�z
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Interpretation of this model is as follows. The buy-sell imbalance parameter
b2 ¼ �7.61 indicates that as the buy-sell imbalance increases due to more
buy volume in the market, then there is a lower probability of filling a
buy limit order due to increased competition, e.g., more buyers than sellers.
The 5-minute price change parameter is b3 ¼ �14.01 and indicates that as
the price is increasing there is a lower probability of filling a buy limit order
because prices are moving higher.

Table 7.2 Grouped Limit Order Data.

Bin

Buy-Sell 5-Min Log Wins Actual Estimated

Imbalance Price Chg Ratio Probability Probability

1 90% 2.5% �3.480 3.0% 100.0%

2 80% 2.5% �3.259 3.7% 100.0%

3 70% 2.5% �2.021 11.7% 100.0%

4 60% 2.5% �1.795 14.2% 100.0%

5 50% 2.5% �1.815 14.0% 100.0%

6 40% 2.5% �0.266 43.4% 100.0%
7 30% 2.5% 0.717 67.2% 100.0%

8 20% 2.5% 0.404 60.0% 100.0%

9 10% 2.5% 2.576 92.9% 100.0%

10 90% 0.0% �6.494 0.2% 100.0%

11 80% 0.0% �3.193 3.9% 100.0%

12 70% 0.0% �1.990 12.0% 100.0%

13 60% 0.0% �1.715 15.2% 100.0%

14 50% 0.0% �0.745 32.2% 100.0%
15 40% 0.0% �0.227 44.4% 100.0%

16 30% 0.0% 0.086 52.1% 100.0%

17 20% 0.0% 1.308 78.7% 100.0%

18 10% 0.0% 0.930 71.7% 100.0%

19 90% �2.5% �2.879 5.3% 100.0%

20 80% �2.5% �1.858 13.5% 100.0%

21 70% �2.5% �2.371 8.5% 100.0%

22 60% �2.5% �1.229 22.6% 100.0%
23 50% �2.5% �1.054 25.9% 100.0%

24 40% �2.5% �0.130 46.8% 100.0%

25 30% �2.5% 1.459 81.1% 100.0%

26 20% �2.5% 1.587 83.0% 100.0%

27 10% �2.5% 3.839 97.9% 100.0%
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Fig. 7.4 compares the estimated probabilities from this model to the
actual calculated probabilities for each data bin. This figure plots the
actual calculated probability (y-axis) as a function of the estimated prob-
ability (x-axis).

Table 7.3 Logistic Regression Summary Results.

Regression Statistics

Multiple R 0.934751

R Square 0.873760

Adjusted R Square 0.863240

Syx (Standard Error) 0.800753

Observations 27

Anova

df SS MS F Significance-F

Regression 2 106.513171 53.256585 83.057083 1.6382

Residual 24 15.388911 0.641205

Total 26 121.902082

Coefficients Standard Error T-Stat P-value Lower 95% Upper 95%

Intercept 2.931526 0.335864 8.728318 6.5258 2.238337 3.624715
Buy-sell imbalance �7.612339 0.596846 �12.754283 3.5023 �8.844168 �6.380510

5-Min price chg �14.007330 7.549567 �1.855382 0.075,865,177 �29.588871 1.574211
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CONCLUSIONS
This chapter provided readers with an overview of various probability
models that can be used for many applications in finance and algorithmic
trading. For example, these techniques are used to compute the probability
of a bond default, bond ratings, probability of filling a limit order, and prob-
ability of finding a match in a dark pool.

We provided insight into the Power Function Model and Logit Probability
Model. The models can be solved via maximum likelihood estimates
(MLE), and in special cases such as the Logistic Regression probability
model, the parameters can be solved via traditional linear regression tech-
niques of OLS.

These models will serve as the foundation behind some of our more com-
plex algorithmic trading models and optimization techniques.

Algorithms rely on these models to specify the prices to enter into the mar-
ket for execution. If the probability of execution is too low the algorithm
may increase their buy order price to provide a higher likely of execution.
If the probability is very higher the algorithm may decrease their buy order
price to achieve better pricing providing the probability of success at this
price is still sufficient higher, e.g., 50% or higher.
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Chapter8
Nonlinear Regression Models

INTRODUCTION
Nonlinear regression consists of models that have a nonlinear formulation
and cannot be linearized via transformations. One of the most “infamous”
nonlinear regression models is the I-Star Market Impact Model introduced
by Kissell &Malamut (1999). This model is used extensively for electronic,
algorithmic, and high frequency trading. See Kissell et al. (2004), Kissell &
Malamut (2006), or Kissell (2013) for an overview of this model and its
applications. The estimation of this model is also provided in Chapter 10
(Estimating Market Impact Models).

The I-Star model has form:

bY ¼ a0$X
a1
1 $Xa2

2 $Xa3
3 þ �b1Xa4

4 þð1� b1Þ
�þ ε

where,

Y ¼ market impact cost of an order. This is the price movement in the
stock due to the buying and selling pressure of the order or trade. It is
comprised of a temporary and permanent component.
X1 ¼ order size as a percentage of average daily volume to trade
(expressed as a decimal)
X2 ¼ annualized volatility (expressed as a decimal)
X3 ¼ asset price (expressed in local currency)
X4 ¼ percentage of volume and used to denote the underlying trading
strategy (expressed as s decimal)

The parameters of the model are: a0, a1, a2, a3, a4 and b1.

The error term of the model ε has normal distribution with mean zero and
variance v2, that is, εwN

�

0; v2
�

.

It is important to highlight here that this model is purely nonlinear and it is
not possible to transform the model into a linear formulation using any of
the techniques of previous chapters.
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Nonlinear regression models present some difficulty to analysts. First, they
cannot be solved via traditional ordinary least squares methods and analysts
must use more sophisticated mathematical approach to estimate the para-
meters of these models. Second, nonlinear models are also more difficult
to interpret and evaluate. It is not as direct and straight forward to test
whether a variable is statistically significant in a nonlinear model as it is
for a linear regression model.

Nonlinear regression models can be solved via maximum likelihood
estimation (MLE) and in some situations, they can be solved via nonlinear
least squares techniques (non-OLS). For examples, nonlinear ordinary least
squares techniques can be used if the error term is normally distribution. For
nonlinear regression models where the underlying error distribution is not
normally distributed, we need to use MLE techniques.

A process to estimate the parameters of nonlinear models is described in
Greene (2000), Fox (2002), and Zhi, Melia, Guericiolini, et al. (1994).

REGRESSION MODELS
As we have discussed in previous chapters, a linear model is a model that
is linear in the parameters. In many cases, a nonlinear model can be trans-
formed into a linearized model. A linear model is often preferred over a
nonlinear model because it can be solved and evaluated using standard
mathematical techniques. For example, a linear model can be solved and
analyzed via OLS regression techniques.

A linearized model is a model that can be transformed into a model in the
form:

fyðyÞ ¼ b0 þ b1$f1ðx1Þ þ b2$f2ðx2Þ þ.bk$fkðxkÞ þ e

In this case, the functions f( ) cannot include any of the parameter values. For
example, consider the following types of regression models:

Linear Regression Model

y ¼ b0 þ b1x1 þ b2x2 þ.þ bkxk þ e

This model is in linear form and is the traditional linear regression model.

Polynomial Regression Model

y ¼ b0 þ b1xþ b2x
2 þ.þ bkx

k þ e
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A polynomial regression is a model that is linear in the parameters but
the independent x-variables will have integer powers. The x variable for
a polynomial model can be any value (both positive and negative) but the
exponents need to be positive integer values. A polynomial model can be
transformed to a traditional linear model with the following transformation:
Let zk ¼ xk, then we have,

y ¼ b0 þ b1z1 þ b2z2 þ.þ bkzk þ e

Here, zk represents the transformed variable. Notice that this model is
now linear in both parameters and variables, and can be solved vis OLS
techniques. One item worth noting is that since the variables are correlated,
we will not be able to determine a direct cause-effect relationship between y
and x. That is, since all x variables are correlated, we do not know with
certainty which x is causing the change in y. This model is used, however,
for estimation and forecasting needs.

Fractional Regression Model

y ¼ b0 þ b1x
p1 þ b2x

p2 þ.þ bkx
pk þ e

A fractional polynomial regression (or simply fractional polynomial model
for short) is a model that is linear in the parameters. The exponent of the
x variable pk that can be any value (integer or fractional). The fractional
regression model requires all input variable to be positive since we cannot
calculate the value of a negative number to a negative exponent. That is,
xi > 0 for all i.

The fractional polynomial model can be transformed to a traditional linear
model simply by defining a new variable z for each x variable. This is as
follows:

y ¼ b0 þ b1z1 þ b2z2 þ.þ bkzk þ e

Once again, zk represents the transformed variable and because this model
is linear in both parameters and variables it can be solved via OLS
techniques. Similar to the polynomial model, because the variables are
not independent and there is correlation across the variables, it will be
difficulty to determine a direct cause-effect change in the y value from
the input variables. The estimated parameters and best fit model, however,
will be statistically correct and can be used for estimation and forecasting
needs.
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Log-linear Regression Model

Y ¼ b0X
b1
1 Xb2Xb3

ε

A log-linear regression model is a multiplicative model where the model
parameters are the exponents of the input variables. There are many famous
economic and financial models that follow a power function formation. For
example, the CobbeDouglas production function follows a power law
formulation.

A special case of the log-linear model is when all variables are positive, e.g.,
Xi > 0 and Yi > 0. In this situation, we can transform the model by using
logs. This is as follows:

lnðYÞ ¼ lnðb0Þ þ b1 lnðX1Þ þ b2 lnðX2Þ þ b3 lnðX3Þ þ lnðεÞ
Now, if we let y ¼ ln(Y) and xk ¼ ln(Xk), this model is written as:

y ¼ a0 þ a1x1 þ a2x2 þ a3x3 þ e

Notice that for simplicity or notation, we are using lower case y and x to
denote the log of the variable value, and e to denote the log of the error
term. Additionally, we are using a0s in place of the b0s in this regression.
This change of parameters notation is intentional because we need to
make an adjustment for the b0 parameters.

This model is solved via OLS methods. First, we solve for the ai parameters
using OLS and the log transformed data. Then, we then use the ai parameters
to calculate the or original bi parameters as follows:

b0 ¼ ea0þ0:5$s2e

b1 ¼ a1

b2 ¼ a2

b3 ¼ a3

Notice that the b0 parameter is more complex and requires the regression
error term s2e . This is due to the distribution of the log function. The other
parameters b1, b2, b3 are determined directly from a1, a2, a3.

Logistic Regression Model

y ¼ 1
1þ e�ðb0þb1x1þ.þbkxkÞ
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A logistic regression model is used in primarily in probability models.
When the y variable denotes a probability value with 0 < y < 1 this model
can be transformed to a linear form via the wins ration. This transformed
model is:

b0 þ b1x1 þ.þ bkxk ¼ ln

�

p

1� p

�

The model parameters for a logistic regression model can be solved via
OLS regression techniques.

Nonlinear Model

y ¼ b0$x
b1
1 þ ð1� b0 Þ$xb22 þ e

All the previous models shown above could be transformed into a
traditional linear model which can be solved via OLS techniques. This
model, however, cannot be transformed into a linear model using any of
the techniques above. For example, a log transformation of the model
does not result in a linear model and there is no way to perform another
type of transformation via division as was done with the logistic model.
Therefore, this model needs to be solved via new regression solutions
techniques. These are described next.

NONLINEAR FORMULATION
Consider the following regression model:

y ¼ b0$x
b1
1 þ ð1� b0 Þ$xb22 þ e

where,

y ¼ dependent variable
x1, x2 ¼ explanatory factors
b0, b1, b2 ¼ model parameters
e ¼ randomness and indicates the value of dependent variable not
explained by the model

A model of this type and formulation is extremely important for
algorithmic and high frequency trading. These models are used to help
determine the most appropriate algorithm and trading parameters such as
percentage of volume (POV) rate or trade time, and these models are
used to estimate the expected market impact cost of a trade. Furthermore,
these models as we will see in subsequent chapters, provide insight into
how market impact cost will change with order size, volatility, price,
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and trading rate. For example, a more urgent trading strategy (aggressive
trading) will incur higher market impact cost but lower timing risk and a
less urgent trading strategy (passive trading) will incur less market impact
cost buy more timing risk. These models are used to help determine the
optimal trading rate and have recently been incorporated into portfolio
construction models.

Unfortunately, it is not possible to transform the model into a linearized
form that can be solved via OLS regression techniques.

Therefore, we need to use new mathematical approaches to estimate the
model parameters and to test the statistical significance of each explanatory
factor, and to measure the model performance (e.g., R2 goodness of fit and
the regression error). These steps are described next.

SOLVING NONLINEAR REGRESSION MODEL
Solving a nonlinear regression model requires an alternative mathematical
technique to ordinary least squares OLS. This analysis is comprised of three
parts:

1. Estimating Parameters
2. Hypothesis Testing
3. Measuring Model Performance

ESTIMATING PARAMETERS
We outline the parameter estimation process for a general nonlinear model
using MLE and nonlinear least squares (non-OLS).

Maximum Likelihood Estimation (MLE)
Step I: Define the Model
Let,

y ¼ f ðx; bÞ þ e

Where,

ewN
�

0; s2
�

Notice that for this nonlinear model formulation the data is normally
distributed.
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Step II: Define the Likelihood Function

L
�

b; s2
� ¼

Y
n

i¼ 1

1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p e�

ðyi�fiðx;bÞÞ2
2s2

Compute the log-likelihood function.

L��b; s2
� ¼

X
n

i¼ 1

ln

�

1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p e�

ðyi�fiðx;bÞÞ2
2s2

�

This reduces to:

L��b; s2
� ¼

X
n

i¼ 1

�1
2
lnð2pÞ � 1

2
ln
�

s2
�� 1

2s2
ðyi � fiðx; bÞÞ2

Finally, we have the log-likelihood function:

L��b; s2
� ¼ � n

2
lnð2pÞ � n

2
ln
�

s2
�� 1

2s2

X
n

i¼ 1

ðyi � fiðx; bÞÞ2

Step III: Maximize the Log-Likelihood Function
Differentiate L�

�

b; s2
�

for each parameter b and for s2. This is as follows:

vL�ðb; s2Þ
vbk

¼ �2
s2

X
n

i¼ 1

ðyi � fiðx; bÞÞ$vf ðbkÞ
vbk

vL�ðb; s2Þ
vs2

¼ �n

2s2
þ 2
2s4

X
n

i¼ 1

ðyi � fiðx; bÞÞ2

The parameters are calculated by setting each partial derivative equal to zero
as follows:

vL�ðb; s2Þ
vb1

¼ 0

vL�ðb; s2Þ
vb2

¼ 0

«

vL�ðb; s2Þ
vbk

¼ 0

vL�ðb; s2Þ
vs2

¼ 0
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We now have a system of k-equations and k-unknowns. But solving this
system of equations can be quite complex and time consuming. Luckily,
we can turn to mathematical computation algorithms to solve for these
parameters.

In the above calculations, it is important to note that we are seeking to
maximize a likelihood function based on the normal distribution:

L
�

b; s2
� ¼

Y
n

i¼ 1

1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p e�

ðyi�fiðx;bÞÞ2
2s2

Notice that this function will achieve a maximum value when the exponent
of e is minimized. That is, we can minimize the expression. ðyi � fiðx; bÞÞ2

This reduces to minimizing the following function:

gl
�

b; s2
� ¼

X
n

i¼ 1

ðyi � fiðx; bÞÞ2

It is important to note here that if the underlying assumption for the y-value
data were from a different distribution, we could solve for the model
parameters in the same manner. But we would need to use a likelihood
function that reflected the distribution of the data.

NONLINEAR LEAST SQUARES (NON-OLS)
An alternative method to solve for the model parameters is via nonlinear
least squares. One important note here is that if the data is normally distrib-
uted that the calculated parameter values from both the MLE and non-OLS
techniques will be the same. The regression error term, however, will be
slightly different from these two methods. The non-OLS technique is
only appropriate if the y-values are normally distributed.

The technique to calculate parameter values using non-OLS is as follows:

Step I: Define the Model

y ¼ f ðx; bÞ þ e

Step II: Define the Error Term

e ¼ ðy� f ðx; bÞÞ
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Step III: Define a Loss FunctiondSum of Square
Errors

L ¼
X

ðy� f ðx; bÞÞ2

Notice that this loss function minimizes the sum of square errors. This is the
same as linear regression but in this case our function is nonlinear.

Step IV: Minimize the Sum of Square Error
We calculate the partial derivative for each parameter bk as follows:

vL

vbk
¼ � 2

X
n

i¼ 1

ðyi � fiðx; bÞÞ$vf ðx; bÞ
vbk

We can solve for model parameters that minimize L using mathematical
optimization algorithms. For example, “interior point,” “bfgs,” “levenberg-
marquardt,” “trust region,” “quasi-newton,” and “sequential quadratic
programming.”

The regression error is calculated in the same manner as it is for linear
regression models and is as follows:

s2 ¼ 1
n� k

X

ðy� byÞ2

HYPOTHESIS TESTING
The next step to solve a nonlinear regression model is to perform a
hypothesis test to determine if the x-variables are statistically significant
using a T�Test. The test statistic is computed for each parameter bk as
follows:

TStatðbkÞ ¼ b�k
SeðbkÞ

In this representation, b�k and Se(bk) are the estimated value and standard
error of parameter bk respectively. In nonlinear OLS the calculation of the
parameter estimation error Se(b) is not as direct as it is in OLS. But the
parameter variances can be estimated from a linearized form of the model
using the Jacobian matrix J.

Let,

Jij ¼ v

vbj
ðy� f ðxi; bÞÞ ¼ �vf ðxi; bjÞ

vbj
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In this notation, i represents the ith row and j represents parameter bj. Thus, J
is an i x j matrix.

The parameter standard error is computed using this Jacobian and setting
each bk ¼ b�k where b�k is the estimated value for bk from step I above.

Then we have,

covðbÞ ¼ s2ðJ 0JÞ�1

Notice that this is similar to the estimated parameters covariance matrix un-
der OLS but using the Jacobian instead of the X matrix.

Finally, the standard error of bk is the square root of entry k, k in cov(b),
that is:

SeðbkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covk;kðbÞ
q

EVALUATE MODEL PERFORMANCE
The last step is to evaluate the model performance. This step should only be
performed after parameter estimation and after we have concluded that all
the variables are statistically significant predictor variables. As noted above,
if a variable is determined to not be statistically significant at the desired
significance level a, then the variable needs to be removed from the model,
and analysts need to repeat the entire sampling estimation process.

There are numerous ways to evaluate and measure model performance for a
nonlinear regression model. For our purposes, we rely on two measures
similar to OLS techniques. These are: nonlinear R2 and Syx. These are calcu-
lated as follows:

1. Calculated by value using the nonlinear model. This is:

by ¼ f ðx; bÞ

2. Compare theby to the actual y. Analysts will often construct a xy plot with
the estimated y-value on the x-axis and the actual y-value on the y-axis.

3. Run a regression of the form:

y ¼ a0 þ a1$by

4. The nonlinear R2 and regression error Syx are then determined from the
output from this regression.

5. The final nonlinear performance test is to perform a hypothesis test on the
parameters a0; a1 to determine they are statistically equal to a0 ¼ 0 and
a ¼ 1 as would be expected if by is a proper estimate of y.
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SAMPLING TECHNIQUES
What is data sampling? Data sampling is a statistical technique that is used
to ascertain information about an outcome event. For example, sampling
techniques at times help us implement better prediction or forecasting
model, estimate the probability of success, or test the significance of explan-
atory factors and parameters that are being proposed for a model. Sampling
techniques also allows us to evaluate the underlying probability distribution
of a model using a subset of data rather than the entire data universe.

Data sampling is required when:

(1) We are unable to observe and collect all data across all possible
outcomes.

(2) It may be too costly, time consuming, or resource intensive to collect
data across all possible outcomes.

(3) The collection of all data outcomes is not easily manageable.
(4) We need to understand the accuracy of the model including significance

of the parameters and distribution of the data.
(5) We do not have sufficient data points for a complete and thorough

analysis.

For example, during a presidential election it is not possible to poll all
voters to determine their favorite candidate and likely election winner.
Thus, statisticians seek to draw conclusions about the likely winner using
a smaller subset of data known as a sample.

In finance and algorithmic trading, we very often do not have enough data
observations to be able to construct statistically significant models. For
example, covariance risk models require an enormous quantity of historical
of price data to correctly calculate covariance across all pairs of stocks. In
most cases, there is simply not enough data observations available and even
if there were enough data observations available, it is likely that companies
changed their business model, products, and future strategy direction which
makes any uncovered historical relationship no longer valid. This is exactly
the reason why in finance we use risk model constructed by factor models
such as CAPM or APT, rather than by using historical data.

Data sampling helps analysts resolve data limitation problems and generate
outcome predictions. It allows modelers to utilize smaller data sets and/or
incomplete data sets and build and test models efficiently. Data sampling,
however, is associated with uncertainty and sampling error. It is a required
that the analyst understands the statistical error and uncertainty when
making predictions about an upcoming game. As it turns out, understand
the statistically accuracy of the model and the underlying distribution of
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the error term is one of the most important functions of the data modeling
process. In many situations, sampling of the data is needed to generate this
error terms and to understand the distribution of these error terms. Many of
the more important probability distribution functions for sports modeling
problems are described above.

The remainder of this chapter will discuss different types of data sampling
techniques and their use in sports modeling problems. These techniques
include:

n Random Sampling
n Sampling with Replacement
n Sampling without Replacement
n Monte Carlo Techniques
n Bootstrapping Techniques
n Jackknife Sampling Techniques

RANDOM SAMPLING
Random sampling is a statistical technique that selects a data samples based
upon a predefined probability that each data point may be selected for
analysis. The probability levels are determined in a manner such that the
underlying data subset will be most appropriate for the data modeling needs.
In many cases these probability levels are specified such that each data point
will have the same chance of being included and in other cases the proba-
bility levels are specified such that way such that the expected data set will
have consistent and/or similar characteristics as the data universe.

Nonrandom sampling is another sampling technique. In this case, the actual
data samples are selected based on availability or ease of the data collection
process. Data points are not selected based on any probability level, and thus,
the likelihood of any data item being included in the subset sample will
differ. This makes it difficult to make inferences about the larger data uni-
verse and introduces additional error into the modeling process. However,
there are techniques that analysts can use to account for these biases.
Many of these nonrandom sampling techniques are used in qualitative sur-
veys where a surveyor stands at the front of a mall, supermarket, train station,
or some other location and asks questions to people walking by. Thus, only
the people who would be visiting these sites at these times could become part
of the sample. These types of nonrandom sampling techniques include con-
venience sampling, consecutive sampling, and quota sampling techniques.
These sampling techniques are not appropriate sampling techniques for sports
modeling problems and will not be discussed in the text.
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Resampling is a statistical technique that consists of performing an analysis,
running a model, or estimating parameter values for many different data sets
where these data sets are selected from the larger data universe. Resampling
is an appropriate technique for many different statistical applications and
can be used to estimate parameter values and probability distributions. In
many situations, we may not have enough data points or data observations
to be able to these metrics directly due to data limitation issues, and/or the
underling mathematical model may be too complex to calculate error terms
due to data limitations.

Resampling allows analysts to estimate parameter values and probability
distributions using the data samples. This then allows analysts to evaluate,
test, and critique modeling approaches to determine the best and most
appropriate model for problem. Resampling allows analysts to make proper
statistical inferences and conclusions about future outcome events using
only the data at hand.

SAMPLING WITH REPLACEMENT
Sampling with replacement is a resampling technique where each data item
can be selected for and included in the data sample subset more than once.
For example, suppose we have a bag of ping pong balls with numbers writ-
ten on each ball. If we are interested in learning the average number written
on the ping pong ball using a sampling with replacement approach, we
would pick a ball at random, write down the number, and then put the
ball back in the bag. Then we would pick another ball at random, write
down the number, and then put the ball back in the bag. The selection of
balls would be repeated for a specified number of times. Once completed,
we would calculate the average across all numbers written down. In this
analysis, it is quite possible to pick the same ball multiple times.

Sampling with replacement is similar to many lotto games were the player
picks four (4) numbers from 1 to 10 and where each number can be selected
more than once. In this scenario, there would be four machines with 10 ping
pong balls each numbered from 1 to 10. Then the machines would select
one ball from each machine. The four numbers selected could consist of
all different numbers, such as 1-2-8-4, or have some or all repeated
numbers, such as 5-2-5-1 or 9-9-9-9.

Sampling with Replacement Usage:

n If a data item can be selected more than once it is considered sampling
with replacement.
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SAMPLING WITHOUT REPLACEMENT
Sampling without replacement is a resampling technique where each data
item can be selected and used on our data sample subset only once. For
example, using the same ping pong ball example where we are interested
in learning the average value of the numbers on the ping pong balls the
sampling without replacement would consist of picking a ball from the
bag at random and writing down its value, but leaving the ball outside of
the bag. Then picking another ball from the bag, writing down its value,
and leaving that ball outside the bag, and repeating this process for a
specified number of draws. In this case, each ball can only be selected
one single time.

Sampling without replacement is similar to a power ball type of contests where
a player is asked to pick 6 numbers from 1 to 44 (or variations of this type of
selection). In this scenario, each number can only be selected a single time.

Sampling without Replacement Usage:

n If a data item can only be selected one time than it is considered sampling
without replacement.

MONTE CARLO SIMULATION
Monte Carlo Simulation is a statistical technique that predicts outcomes
based on probability estimates and other specified input values. These input
values are often assumed to have a certain distribution or can take on a
specified set of values.

Monte Carlo simulation is based on repeatedly sampling the data and
calculating outcome values from the model. In each sample, the input factor
and model parameters can take on different values. These values are
simulated based on the distribution of the input factor and parameter values.
For example, if X is an input factor for our model and X is a standard normal
random variable, each simulation will sample a value of X from a standard
normal distribution. Thus, each sample scenario will have a different value
of X. Analysts then run repeated simulations where they can allow both the
parameter values and input factors to vary based on their mean and standard
error. Analysts then use these the results of these simulations to learn about
the system and make better informed future decisions.

Another important use of Monte Carlo simulation is to evaluate the
performance and accuracy of a model, and to determine if a model or
modeling methodology is appropriate for certain situation. For example,
suppose we want to determine if the power function and a specified
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optimization process is an appropriate modeling technique to predict the
probability of executing an order in a dark pool. After we construct our
probability prediction model with the input variables and error term,
we can simulate executions using the prediction model and the underlying
variable distribution and error distribution. Monte Carlo sampling will
simulate the x variable values based on its underlying distribution and the
error term from its underlying distribution. This allows us to understand
the probability of executions, and the overall distribution of executions
resulting from our Monte Carlo simulations.

Monte Carlo Usage:

n Monte Carlo sampling is a very valuable tool to predicting future out-
comes that are dependent upon input variables and random noise each
with their own unique distribution.

n Monte Carlo simulation is a very valuable tool when the resulting
outcome is mathematically complex and when it is difficult to derive
an analytical solution.

n Monte Carlo simulation provides the means to make forecasts and
predictions, and provides the underlying probability of observing these
outcome events.

BOOTSTRAPPING TECHNIQUES
Bootstrapping is a statistical technique that refers to random sampling of
data with replacement. One of the main goals of bootstrapping is to allow
analysts to estimate parameter values, corresponding standard errors, and
to gain an understanding of the probability distribution of the model’s error
term.

Bootstrap sample is used to estimate model parameters and parameter
distributions. The technique is as follows:

Step I: Determine the appropriate sample size n.
Step II: Randomly select n-data points with replacement from the n-data
universe. After each sample is drawn, compute the parameters of the
model using appropriate statistical techniques. Since we are sampling
with replacement, a data observation can be selected multiple times
for the sample universe. Repeat the resampling with replacement
experiment. E.g., repeat for N ¼ 1000 or N ¼ 10,000 times.
Step III: Using the estimated parameters from above, calculate the
average parameter value and standard deviation of parameter values.
We can also construct a histogram of parameter values for all samples.
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These resampling trials provide the estimated average parameter value and
corresponding standard error. Using bootstrapping techniques, the expected
parameter value and corresponding standard error is computed as
the average value across and standard deviation across all sample results.
Bootstrapping results also allow us to calculate the confidence for a speci-
fied percentile interval such as middle 50% or middle 68% (to be consistent
with the standard deviation) of data points directly from the data. It
is important to note that accurate results are dependent upon having a
sufficiently large enough initial sample size n.

Bootstrapping Usage:

n Bootstrapping is often used with nonlinear regression analysis to
estimate parameter values and corresponding standard errors.

n Bootstrapping allows analysts to perform hypothesis tests to determine is
a proposed explanatory factor is statistically significant.

n Bootstrapping is especially useful when the proposed nonlinear
regression model formulation is complex, and the Jacobian is difficulty
to calculate.

n Bootstrapping provides a technique to estimate parameters without the
need to solve often difficult mathematical equations.

JACKKNIFE SAMPLING TECHNIQUES
Jackknife sampling is another type of resampling technique that is used to
estimate parameter values and corresponding standard deviations. Jackknife
sampling requires that the analyst omit a single observation in each data
sample. Thus, if there are n-data points in the sample, the jackknife
sampling technique will consist of n samples each with n-1 data points in
each sample subset analysis. Thus, in this case, the analyst would solve
the model n times each with n-1 data points. This allows the analyst to
estimate both parameter value and corresponding standard error.

One difference between bootstrapping and jackknife sampling is that boot-
strapping samples are determined with replacement so a data observation
can be included in the model more than once and jackknife samples are
determined without replacement so a data observation can only be included
in the model once.

This process is as follows:

Step I: Select the number observations to include in the analysis.
Step II: Select a random sample of n-data points without replacement.
Each data item can only be selected for the sample one time.
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Compute the parameters of the model using one of the estimation tech-
niques from above. Repeat the sampling process for a specified number
of trials. For example, select the number of trials N to be sufficient large,
e.g., repeat for N ¼ 1, 000 or N ¼ 10, 000 times.
Step III: Using the estimated parameters from above, calculate the
average parameter value and standard deviation of parameter values.
Analysts can also construct histograms of the parameter values to
determine confidence intervals of different sizes.

These jackknife sampling trials provide the estimated average parameter
value and corresponding standard error. Bootstrapping results also allow
the calculation of confidence intervals for a specified percentile as the
middle 50% or middle quartile (75%). It is important to note that accurate
results are dependent upon having a sufficiently large enough initial sample
size n.

A variation of the jackknife sampling technique is to exclude a small num-
ber of data points from the analysis, e.g., exclude 10% of the data observa-
tions, rather than a single observation. Then use the remaining 90% of
observations to estimate the model parameters. For example, start with input
variable x1 and categorize the data into deciles based on the values of x1.
First exclude the lowest decile of x1 data and estimate model parameters.
Second, exclude the second lowest decile of x1 data and estimate model
parameters. Repeat until we exclude the largest decile of x1 data and estimate
the parameters. Repeat this exclusion process for each data variable. Thus, if
we have k input variables, we will have m ¼ 10$k estimated parameter
values for each parameter. We would compute the average and standard
deviation of these data results for our estimated parameter value and the
corresponding standard error.

Jackknife Usage:

n Jackknife sampling is often used with nonlinear regression analysis to
estimate parameter values and corresponding standard errors.

n Bootstrapping allows analysts to perform hypothesis tests to determine is
a proposed explanatory factor is statistically significant.

n Bootstrapping is especially useful when the proposed nonlinear
regression model formulation is complex and the Jacobian is difficulty
to calculate.

n Bootstrapping provides a technique to estimate parameters without the
need to solve often difficult mathematical equations.
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Example 8.1. In this example, we fit a nonlinear regression model to the
data in Table 8.1. This table has all our calculations for this example so
that interested readers can verify all calculations and results.

The regression model used to fit this data has form:

by ¼ xb11 þ xb22

The model has two input variables x1, x2 and two parameters b1, b2.

The loss function for this model is computed via nonlinear least squares:

L ¼
X

�

y�
�

xb11 þ xb22

��2

Model parameters are estimated via first order conditions and using mathe-
matical optimization techniques:

vL

vb1
¼ � 2

X
�

y�
�

xb11 þ xb22
��

$lnðx1Þ$xb11 ¼ 0

vL

vb2
¼ � 2

X
�

y�
�

xb11 þ xb22

��

$lnðx2Þ$xb22 ¼ 0

Solving we get:

b1 ¼ 0:2537

b2 ¼ 0:7553

with,

s2 ¼ 0:0095

The parameter standard errors are calculated using the Jacobian. For this
nonlinear estimation model, the Jacobian has form:

J ¼ �

2

6

4

lnðx1;1Þ$xb11;1 lnðx2;1Þ$xb22;1
« «

lnðx1;100Þ$xb11;100 lnðx2;100Þ$xb22;100

3

5

where, xi,j represents variable xi and row j.

The Jacobian is calculated using the actual values for each xij and the previously
estimated b�1; b

�
2 where b�k represents the estimated value from above for bk.

The parameter covariance matrix is calculated as:

covðbÞ ¼ s2$ðJ 0JÞ�1 ¼
	

0:000350 �0:000545

�0:000545 0:001531
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Table 8.1 Nonlinear Regression Data.

Obs X1 X2 Y estY e [ Y-estY Obs X1 X2 Y estY e [ Y-estY

1 0.79609 0.18163 1.24618 1.21950 0.02668 51 0.05757 0.10298 0.61618 0.66435 �0.04817

2 0.07085 0.25213 0.92277 0.86417 0.05861 52 0.15403 0.71074 1.53153 1.39488 0.13665
3 0.56154 0.99609 1.79957 1.86087 �0.06130 53 0.19842 0.48468 1.16729 1.24214 �0.07485

4 0.13575 0.66998 1.27123 1.34154 �0.07032 54 0.71869 0.99949 1.86217 1.91924 �0.05707

5 0.99126 0.68834 1.95865 1.75198 0.20667 55 0.15865 0.39583 0.99134 1.12347 �0.13214

6 0.32892 0.58366 1.20532 1.42009 �0.21477 56 0.87797 0.14274 1.02921 1.19735 �0.16814

7 0.83608 0.18014 1.12967 1.22960 �0.09993 57 0.35084 0.08738 0.89658 0.92532 �0.02873

8 0.58244 0.73487 1.72042 1.66428 0.05614 58 0.42304 0.03191 0.97025 0.87809 0.09216

9 0.72813 0.70798 1.66802 1.69308 �0.02506 59 0.13959 0.20330 0.98685 0.90707 0.07978

10 0.97864 0.55472 1.53520 1.63530 �0.10010 60 0.68994 0.45129 1.71989 1.45843 0.26145
11 0.10612 0.98320 1.56698 1.55339 0.01359 61 0.05150 0.37478 0.95662 0.94774 0.00888

12 0.65326 0.18669 1.25007 1.17912 0.07095 62 0.72708 0.66448 1.41947 1.65671 �0.23724

13 0.94741 0.38336 1.57548 1.47110 0.10438 63 0.54097 0.54169 1.53277 1.48504 0.04772

14 0.44023 0.33810 1.30115 1.25296 0.04820 64 0.13568 0.35047 0.95728 1.05547 �0.09819

15 0.59828 0.51983 1.58954 1.48790 0.10164 65 0.87999 0.62574 1.57547 1.66989 �0.09442

16 0.21817 0.10692 0.83837 0.86442 �0.02605 66 0.54290 0.15804 1.07911 1.10467 �0.02555

17 0.04305 0.45296 1.04080 1.00011 0.04069 67 0.93242 0.56303 1.53194 1.63040 �0.09846

18 0.52249 0.78698 1.77797 1.68267 0.09530 68 0.45607 0.23698 1.15276 1.15649 �0.00372
19 0.94957 0.49137 1.59498 1.57163 0.02335 69 0.34815 0.44804 1.27077 1.31049 �0.03972

20 0.86344 0.28266 1.29170 1.34850 �0.05680 70 0.67157 0.15001 1.11194 1.14256 �0.03063

21 0.64490 0.93408 2.01827 1.84449 0.17378 71 0.17501 0.04651 0.88601 0.74121 0.14480

22 0.68992 0.26688 1.33133 1.27885 0.05248 72 0.78951 0.98193 1.98192 1.92814 0.05378

23 0.29557 0.08106 0.84307 0.88395 �0.04088 73 0.92408 0.38225 1.33922 1.46382 �0.12460

24 0.04245 0.35126 0.94919 0.90244 0.04675 74 0.94676 0.30218 1.27558 1.39119 �0.11561

25 0.48240 0.75184 1.63483 1.63737 �0.00254 75 0.20367 0.88910 1.59623 1.58294 0.01329

26 0.92324 0.82500 1.75236 1.84470 �0.09234 76 0.51728 0.52598 1.46315 1.46155 0.00160
27 0.63833 0.34263 1.37243 1.33767 0.03476 77 0.10854 0.83775 1.17698 1.44418 �0.26720

28 0.66220 0.76955 1.78233 1.72121 0.06112 78 0.08387 0.44827 1.01325 1.07881 �0.06556

29 0.52427 0.19733 1.26102 1.14244 0.11858 79 0.33167 0.08589 0.92845 0.91244 0.01602

30 0.55591 0.70762 1.65962 1.63173 0.02789 80 0.30927 0.72949 1.61836 1.53056 0.08780

31 0.09136 0.74468 1.43171 1.34537 0.08634 81 0.41521 0.57137 1.48075 1.45538 0.02537

32 0.84137 0.09147 1.24907 1.12136 0.12772 82 0.16262 0.48904 1.08935 1.21340 �0.12405

Continued
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Table 8.1 Nonlinear Regression Data. Continued

Obs X1 X2 Y estY e [ Y-estY Obs X1 X2 Y estY e [ Y-estY

33 0.48360 0.17815 1.02065 1.10341 �0.08276 83 0.36608 0.59466 1.39602 1.45030 �0.05428

34 0.56982 0.62763 1.60303 1.57044 0.03259 84 0.78836 0.88454 1.98031 1.85296 0.12735

35 0.18486 0.95197 1.63784 1.61518 0.02266 85 0.12794 0.13579 0.77921 0.81492 �0.03571

36 0.63492 0.18340 1.20430 1.16890 0.03540 86 0.65914 0.62487 1.59935 1.60073 �0.00138

37 0.29982 0.05179 0.89768 0.84360 0.05408 87 0.43959 0.34603 1.33474 1.26043 0.07431
38 0.72828 0.63054 1.66847 1.62858 0.03988 88 0.33583 0.06291 0.87623 0.88201 �0.00577

39 0.45333 0.31880 1.28655 1.23987 0.04669 89 0.98753 0.95233 1.99411 1.96060 0.03351

40 0.01689 0.75227 1.10136 1.16172 �0.06035 90 0.35383 0.91506 1.93073 1.70348 0.22725

41 0.86319 0.47187 1.52496 1.53042 �0.00546 91 0.83558 0.64478 1.73529 1.67333 0.06196

42 0.89829 0.44278 1.48768 1.51361 �0.02593 92 0.10040 0.99099 1.57772 1.55138 0.02634

43 0.34449 0.20398 1.24474 1.06410 0.18064 93 0.13634 0.31949 1.07169 1.02564 0.04605

44 0.49902 0.21074 1.10926 1.14682 �0.03757 94 0.83436 0.53249 1.47897 1.57637 �0.09740

45 0.40389 0.48280 1.41742 1.37152 0.04590 95 0.88641 0.53049 1.49636 1.58937 �0.09302
46 0.23999 0.46252 1.16222 1.25484 �0.09262 96 0.98046 0.21075 1.21875 1.30349 �0.08474

47 0.05762 0.91704 1.37609 1.42154 �0.04546 97 0.91347 0.52401 1.67566 1.59108 0.08458

48 0.15677 0.43085 1.06331 1.15441 �0.09109 98 0.87499 0.24668 1.32154 1.31412 0.00742

49 0.88239 0.27174 1.56289 1.34253 0.22036 99 0.14757 0.16611 0.74052 0.87319 �0.13267

50 0.07036 0.02203 0.60316 0.56610 0.03705 100 0.64670 0.93086 1.96068 1.84265 0.11803
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Finally, we have,

Seðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00035
p

¼ 0:0187

Seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00153
p

¼ 0:0391

Results for the nonlinear regression are shown in Table 8.2.

The next step in our nonlinear regression analysis is to measure the overall
performance of the model. Here, we run a second regression that estimates
the actual y from the estimated by using the model parameters estimated
above and the input variables in Table 8.1. This model has form:

y ¼ a0 þ a1$by

This regression model is solved using OLS estimation techniques. The
results are shown in Table 8.3.

Table 8.2 Nonlinear Regression Results.

Parameter Estimate Std Error T-Stat P-Level

b1 0.2537 0.0187 13.5620 3.23E-24

b2 0.7553 0.0391 19.3060 3.63E-35

Table 8.3 Nonlinear Regression Performance Results.

Regression Statistics

Multiple R 0.95776

R Square 0.91731

Adjusted R Square 0.91647

Standard Error 0.09738

Observations 100

Anova

df SS MS F Significance F

Regression 1 10.30878 10.30878 1087.17642 7.5558

Residual 98 0.92925 0.00948

Total 99 11.23803

Coefficients Standard Error T-Stat P-Value Lower 95% Upper 95%

Intercept �0.02252 0.04273 �0.52707 0.5993 �0.1073 0.0622

estY 1.02045 0.03095 32.97236 7.5558 0.9590 1.0818

Jackknife Sampling Techniques 217



The goodness of fit of the model is R2 ¼ 0.91,731 indicating a very strong
fit. The regression standard error is Syx ¼ 0.09,738. The P-value of the
parameters a0 is P ¼ .59,933 which indicates that a0 is not significantly
different from zero, exactly as we hoped.

It is important to note here that the standard regression output shows that the
parameter a1 is statistically different from zero, but we want to test if it is
statistically different from one. This statistical test is as follows:

tStatða1Þ ¼ a1 � 1
Seða1Þ ¼ 1:02045� 1

0:03095
¼ 0:66068

The has a corresponding P-value of P ¼ .510,362 which indicates that the
parameter value is not statistically different from 1 which is what we hoped.

A comparison y to estimated by from our model is shown in Fig. 8.1.

Important Notes on Sampling in Nonlinear
Regression Models
In nonlinear regression analysis there is no easy or direct way to compute
the standard error of the model parameter of the Jacobian matrix.
For example, if the data in Example 8.1 was comprised of negative value
we would not be able to compute the Jacobian using direct techniques
because we cannot take the log of a negative number.

y = 1.0204x - 0.0225 
R² = 0.9173
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n FIGURE 8.1 Nonlinear Regression Performance.
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Every different model formulation will have a different standard error
formula, and in most cases, these formulations are very complex and
difficult to derive. To combat this difficulty, we can use numerical
approximations.

A numerical approximate technique to estimate the standard error of a
nonlinear regression model using the bootstrap technique discussed above.
This is as follows:

1. Sample. Take a random sample of the data with replacement. For
example, if you have N-data points select a random sample of n-data
points with replacement.

2. Estimate Parameters. Estimate the model parameters using the sample
data set. After estimating the model parameters, save these values.

3. Repeat. Repeat the sampling and parameter estimation exercise for
m-trials. In most applications, m is set to be between 1,000 and 10,000
trials (1,000 < ¼m < ¼10,000). If greater precision is needed, the
experiment can be repeated for a much number of trials (m � 100,000).

After completing m-trials, we will have m estimated parameter values
for each parameter. For example, for parameter bi there will be m different
estimated values. We denote these different values as bi(j) where j denotes
trial j with 1 � j � m.

We can then calculate the average parameter value and corresponding
standard error for each model parameter as follows:

bi ¼ 1
m

X
m

j¼ 1

biðjÞ

SeðbiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m� 1

X
m

j¼ 1

ðbiðjÞ � biÞ2
s

In this formulation, the average parameter value is simply the average value
across all m-trials. The standard error of the parameter value is the sample
standard deviation of the estimated values multiplied by an adjustment
factor.

After calculating these values, the TStat can be calculated as follows:

TStatðkÞ ¼ bi
SeðbiÞ
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Chapter9
Machine Learning Techniques

INTRODUCTION
Machine learning, as defined by Arthur Samuel in 1959, is a field of computer
science that teaches computers how to learn without being explicitly pro-
grammed to do so.MachineLearning is amethod that allows computer systems
to uncover patterns and hidden relationships in the data, and provides tools to
make future predictions and forecasts. Machine learning helps analysts dissect
larger complex problem into smaller pieces so that they can better understand
the data, information set, and relationships between the data item.

While much of the mathematical theory driving machine learning has been
around for quite some time, it is still a relatively new application for finance
and is just starting to become mainstream.

Machine learning often requires large complex and comprehensive datasets,
and high-speed computers to be able to be able to uncover often complex
and nontransparent relationships and pattern.

There are three main areas of recent advancement in financial modeling.
These are:

n Data Science
n Machine Learning
n Artificial Intelligence

Data Science. Data science is the study of data to acquire insight and relevant
information about system. A data scientist will use advanced scientific
methods, statistics, analytics, and algorithms to extract knowledge
and understanding from the data. This includes developing database manage-
ment processes, statistical analysis, and analytics. Data scientists determine
the most appropriate database and data management techniques to store,
access, process, and analyze the data. Data scientists will often provide sum-
mary statistics to assist with our understanding of the data. This includes the
common data descriptive statistics of: mean, standard deviation, skewness,
and kurtosis, the five-number summary: min, 1Q, median, 3Q, and max,
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and analysis of outliers via the z-score. This also includes applying proper
techniques to understand the set of significant data factors such as principal
component analysis and discriminant analysis. More recently, due to the
arrival of Big Data, data scientists have developed new methods to visualize
and learn about the dataset. These techniques include data visualization,
includes tag-clouds, mind-maps, and heat-maps.

What is Big Data?

In industry, big data is an amorphous concept with different meanings to
different people and in different industries. Big data comes in many
different sizes and shapes and from many different sources. A workhorse
definition of big data is:

Big Data is any collection so large it becomes difficult to process
with traditional tools,

Mike Blake (2013)

Big data comes from two sources, traditional and alternative, and is either
presented either in a structured or unstructured format. Traditional data
consists of data that is readily available or able to be generated. For
examples, data gathered from surveys and observations, data generated
from scientific experiment, industry price data, government data, weather
data, text exams, stock market, and price data, and data is the compiled
from these sources such as averages, standard deviations, covariances,
etc. This encompasses the traditional data that we utilize daily. Alternative
data (also known as nontraditional data) is data that is gathered from nontra-
ditional sources such as scanners, sensors, and satellites. Alternative data
comes from websites, social media, web searches, personal data, blog post-
ings, emails, text documents, and visual images and pictures. Alternative
data consists of data that can be derived from both traditional and non-
traditional data sources such as customer spending and consumption
patterns, investment strategies, etc. Alternative data also refers to the trends
and information that are discovered from these nontraditional data sources.
In fact, nontraditional data is almost limitless.

Another aspect of big data is its structure. Structured data refers to data can
be displayed and summarized in a defined format such as a database table or
computer spreadsheet. For example, traditional data can often be easy stored
and displayed on a table. Nontraditional data, however, is unstructured by
nature and does not have a standard format. For example, a text analytics
application used to read and analyze corporate reports, social media, email,
or phone logs, will likely gather some similar and some much different
information. Data scientists are then tasked with developing the most
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appropriate database management systems so save the data for use in
management decision-making applications. All of which requires new tools
and analytics.

Machine Learning.Machine Learning is a technique that helps analysts un-
cover relationships between an explanatory dataset and a dependent variable
(predictor variable). Machine learning utilizes the datasets and big data
provided by the data scientists, and uses advanced methods to analyze and
uncover relationships between the data and predictor variable. Machine
learning also uses the underlying data and big data to make predictions
and as the foundation for management decision-making processed. Exam-
ples of machine learning include: cluster analysis, classification, predictions.
Machine learning also consists of text, voice, and visual detection.

Artificial Intelligence. Artificial intelligence consists of the computer acting
and making decisions based on a set of input data and uncovered data
relationships. Artificial intelligence utilizes machine learning techniques to
determine how relationships change over time, and just as important, how
decisions should be changed based on the changing data and changing
relationships and patterns. Artificial intelligence utilizes data science, big
data, and machine learning as part of its constantly evolving decision-
making process. Some examples of artificial intelligence include: GPS,
game-playing algorithms, algorithmic trading, robo-investing, robotics,
and reinforcement learning.

Key terms and concepts and explanation of industry buzz words:

This section is to clarify some common misconceptions in the industry and
to define some of the more important industry terms and buzz words. These
are:

Forecasting. Forecasting is the process of estimating future values based on
historical and present data. When analysts forecast energy consumption or
sales, they are often forecasting these values at the aggregate level. For
example, what is my expected sales for the next four (4) quarters, how
much demand will there be for this coming summer’s air conditioning usage,
or what is the expected future stock price, volatility, and/or index value in the
next year. Forecasting allows companies, investors, and money managers to
plan better for the future.

Predictive Analytics. Predictive analytics, also known as predictive
modeling, is the process of making predictions at a much more granular level
such as at the consumer and end user level. Predictive analytics seeks to
uncovering relationships between a particular consumer or consumer class
and an outcome event. For example, which consumer is most likely going
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to buy or utilize my product? Or which type of investor is most likely going
to purchase my company stock. Predictive analytics allows companies to
better identify consumer behavior and take appropriate action for future
marketing campaigns and product development.

Machine Learning. Machine learning is the process of teaching computers
to learn from past data and observations to make better forecasts and predic-
tions, and to uncover trends and relationships in the data. Machine learning
provides the tools and analytics that is used in forecasting and predictive
analytics. Machine learning also provides the necessary tools that is used
in text analytics, voice, and visualization detection. Machine learning makes
use of all available datadboth big and smalldand utilizes high-speed
computer networks to uncover hidden patterns in the data. This allows
analysts to improve their forecasts and improve their statistical predictive
analytics.

TYPES OF MACHINE LEARNING
There are two main types of machine learning algorithms: unsupervised
learning and supervised. These are described as follows:

Unsupervised learning consists of categorizing input data into groups and
subgroups based on common attributes. Unsupervised leaning is based solely
on input data. Unsupervised learning is often used for cluster analysis.

n Cluster Analysis. Cluster analysis is an example of unsupervised learning
where algorithms determine how to best group the data clusters with com-
mon attributes determine by the data. It is important to note that with un-
supervised learning, analysts only provide x-value input data into the
algorithm. There is no predicted outcomes or y-values for this analysis.
An example of cluster analysis in finance is grouping companies together
based on price return trends and/or company fundamentals.

Supervised learning consists of learning a relationship between explanatory
data and a dependent variable (also known as the predictor variable). Super-
vised learning requires both input data and output data. These supervised
learning techniques are used for classification and regression.

n Classification based supervised learning consist of the machine learning
algorithm reading input data and then categorizing the data into prespe-
cified groups. In classification analysis, the output variable is dichoto-
mous where the output variable can only take on two distinct values
or polytomous where the output variable can take on a finite number
of distinct values. These data values are known as outcome events.
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n Regression based supervised learning consist of the algorithm learning
patterns and uncovering relationships from specified input data (e.g.,
x-input data) and predicting output values (e.g., y-values). In regression
analysis, the output value is a continuous variable that can take on any
value. For example, regression supervised learning algorithm will
determine a relationship between the input data x and the output values
y, such as y ¼ f(x).

In machine learning, there is also a third type of learning known as semi-
supervised learning or reinforcement learning. Here computer systems to
learn to choose the most appropriate action given a set of inputs and is
based on both supervised and unsupervised learning techniques. These
learning techniques are often used in conjunction with artificial intelligence
where the computer system needs to continuously learn when it is most
appropriate to change the response and decision. These techniques are often
used in GPS based on traffic pattern, for handwriting recognition, voice, and
visual recognition. Semilearning algorithms are often used as the calculation
engine behind human interaction with computers chatbots including
question and answers based on a human asking a question and the computer
providing the answer and GPS.

EXAMPLES
In this section we provide an overview of the different types of machine
learning analyses.

Cluster Analysis
Cluster analysis is the process of grouping data into clusters of similar char-
acteristics and traits. A common clustering analysis machine learning algo-
rithm is the k-means algorithm. This algorithm will determine the
appropriate k-groups for the data and data items. The groups of data here
are defined by its center point which is known as the group centroid.

The process to perform k-mean analysis for a pair of input data observations
(x, y) is as follows:

I. Randomly define k-centroid groups. Define these k-groups as Group

1 ¼ �x1; y1�, Group 2 ¼ �x2; y2�, .. , Group k ¼
�

xk; yk
�

.

II. For each data items (i ¼ 1, 2,., n) calculate the distance to each group
centroid. This is determined as follows:

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

xi � xj
�2 þ �yi � yj

�2
q
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III. Assign each data item to its closest group. This is the centroid with the
smallest distance from the data point to the centroid mean.

IV. Revised the centroid value. After all data items have been sorted into
the appropriate group, revise the centroid for each group. The new
centroid is calculated as the mean (center) of all data points in the
grouping. For example, if there are n1 data points in group 1, n2 data
points in group 2, .. , and nk data points in group k, the new centroid
for each group is determined as follows:

xj
� ¼ 1

nj

X

i˛j
xi

yj
� ¼ 1

nj

X

i˛j
yi

Here,
�

xj
�
; yj

��
represents the new centroid value for group j, and i˛j

represents the data items that have been sorted into group j.
V. Repeat steps IeIV until there are no changes to the members of each

group. The centroid for each group will be the center of the data items
with points determined above in step IV.

Fig. 9.1A illustrates an example of a dataset with two distinct groups of data.
Fig. 9.1B illustrates an example of a dataset items with four distinct groups
of data.

How many groups?

A natural question with k-mean cluster analysis is how many groups to
specify. In some situations, such as shown in Figs. 9.1A and B, the number
of groupings is evident. Other times, the number of groups is not as obvious,
especially with higher dimension data. In these situations, analysts will often
plot the cumulative distance from the data point to their respective group for
each number of groups from j ¼ 1 to j ¼ k. Analysts can then select the num-
ber of groups to use based on if adding another group to the cluster analysis
provides significant improvement to the sorting.

For example, Fig. 9.1C plots the cumulative distance from each data point
to the centroid of its corresponding group. This graph shows a large reduc-
tion in distance through k ¼ 4 groups, but then adding a fifth group does not
provide a significant reduction in distance. In this case, analysts it would be
suggested to select k ¼ 4 groups to sort the data.
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CLASSIFICATION
Classification analysis is a type of supervised learning where the dependent
variable can be different outcome events. For example, the dependent
variable can be yes or no, success or failure, or a financial rating such as
buy or sell. In other words, the output variable is binary and can only be
one or two possible outcome states. In some cases, however, the output
variable can be defined by several possible outcome states. For example,
college major, favorite color, or a financial rating such as buy, sell, or
hold. In this case, the output variable is a nominal value meaning it can
one of several different outcomes but there is no way to order the output
variable. The different classification outcomes are known as outcome states
or event states.

There are many different algorithms used to solve classification problems
such as logistic regression, decision trees, random forests, and
CART models. In this section, we provide an example of machine learning
classification using logistic regression.

Logistic regression was previously discussed in our chapter on Probability
Models and is useful when the output variable is binary and can only take
on one of two states. For example, the logistic regression model (also
known as logit regression) provides the probability that a data observation
belongs to an event class. This is calculated as follows:

log

�

p

1� p

�

¼ b0 þ b1x1 þ.þ bkxk

If P � .5 then we classify the data observation as belonging to the event
class, and if P < .5 then we classify the data observation as not belonging
to the event class.

But what if there are more than two different event classes? How do we
classify a data observation into the appropriate event class? One way to
accomplish this is to specify a different model for each event state. If there
are n possible event states, then we would need n-1 models. Only n-1 models
are needed because if the data observation is not classified into one of the
first n-1 event classes then it is classified into the last event class. Addition-
ally, the best way to describe this process is as follows. Suppose there are
three different outcome events named A, B, and C. Then we can follow
the logistic regression model formulation and define the following sets of
equations:

log

�

pðAÞ
pðCÞ

�

¼ b1;0 þ b1;1x1 þ.þ b1;kxk
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log

�

pðBÞ
pðCÞ

�

¼ b2;0 þ b2;1x1 þ.þ b2;kxk

Where, bi,0 refers to the intercept b0 term for the ith event class, and bi,1
refers to the slope b1 term for the ith event class.

After some algebra we have,

pðAÞ ¼ PðCÞ$eb1;0þb1;1x1þ.þb1;kxk

pðBÞ ¼ PðCÞ$eb2;0þb2;1x1þ.þb2;kxk

Since the total probability of the system event space needs to sum to one we
have:

PðAÞþPðBÞ þ PðCÞ ¼ 1

By substitution from above, we have.

PðCÞ $ eb1;0þb1;1x1þ.þb1;kxk þ PðCÞ$eb2;0þb2;1x1þ.þb2;kxk þ PðCÞ ¼ 1

Factoring P(C) we get,

PðCÞ $ ðeb1;0þb1;1x1þ.þb1;kxk þ eb2;0þb2;1x1þ.þb2;kxk þ 1Þ ¼ 1

Then,

PðCÞ ¼ 1
ð1þ eb1;0þb1;1x1þ.þb1;kxk þ eb2;0þb2;1x1þ.þb2;kxk Þ

The probability of P(A) and P(B) is calculated from above as follows:

pðAÞ ¼ eb1;0þb1;1x1þ.þb1;kxk

ð1þ eb1;0þb1;1x1þ.þb1;kxk þ eb2;0þb2;1x1þ.þb2;kxk Þ

pðBÞ ¼ eb2;0þb2;1x1þ.þb2;xk

ð1þ eb1;0þb1;1x1þ.þb1;kxk þ eb2;0þb2;1x1þ.þb2;kxk Þ
These parameters can be computed via maximum likelihood estimation or
via nonlinear regression techniques.

REGRESSION
Regression analysis is a type of supervised learning where the dependent
variable is a continuous variable and can take one can any value. A
regression model takes on form:

y ¼ f ðxÞ
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This model formulation is the same as the previous discussed regression
models and can be either linear or nonlinear. In machine learning, we solve
regression models by minimizing the mean square error as follows:

min L ¼ 1
n

X

ðy� byÞ2

If the regression model is:

by ¼ b0 þ b1x1

The parameter values are calculated via an iterative process as follows:

I. Start with an initial guess for b0 and b1.
II. Revise the parameter values as follows:

biþ1
0 ¼ bi0 � a$

vL

vb0

biþ1
1 ¼ bi1 � a$

vL

vb1

Which yields,

biþ1
0 ¼ bi0 þ a$

2
n

X
n

i¼ 1

ðy�byÞ

biþ1
1 ¼ bi1 þ a$

2
n

X
n

i¼ 1

ðy�byÞ$x1

Here, biþ1
0 and biþ1

1 refers to the (iþ1)th iteration of b0 and b1, and a

refers to the learning rate of the algorithms.
In general, the formulation to update parameter bk is calculated as
follows:

biþ1
k ¼ bik þ a$

2
n

X
n

i¼ 1

ðy�byÞ$xk

III. Repeat step II until the change in parameter values and total loss func-
tion L is less than a specified tolerance value. The tolerance is
commonly specified by an acceptable number of decimal points.

	

	

	biþ1
0 � bi0

	

	

	 < εðb0Þ
	

	

	biþ1
1 � bi1

	

	

	 < εðb0Þ
	

	Liþ1 � Li
	

	 < εðLÞ

230 CHAPTER 9 Machine Learning Techniques



It is important to note that the last criteria,
	

	Liþ1 �Li
	

	 < εðLÞ,
specified the change in the model regression model standard error.

NEURAL NETWORKS
A neural network (NNET) or an artificial neural network (ANN) as it is also
commonly referred is a type of supervised machine learning algorithm that
is used for classification and regression. These algorithms have been devel-
oped to mimic the way the brain receives and processes information. The
structure consists of input data (e.g., x-data), hidden layers that process
the data and learn the relationship between the input data and output value,
and the output data, e.g., predicted outcomes. Neural networks have been
found to be extremely successful for problems related to speech, pattern,
and image recognition. They also serve as the basis for natural language
processing which is used in many computer applications where a computer
interacts with a human.

Calculations are performed at each node and the solution algorithm determine
the appropriate weighting factor to apply to each data point. Each node com-
putes a new data value based in the data it receives and passes this data to
all nodes in the next layer. It is important to note that at each node the
NNET applies a mapping function to the data and corresponding weights
to transform the data to have a value between 0 and 1 or between �1
and 1. The more common NNET mapping functions include the sigmoid
and inverse tangent functions. More sophisticated and difficult problems
require more complex NNET structures and deep learning solution
techniques.

Readers interested in learning more about neural networks are referred to
Freeman (1994) or Schmidhuber (2015).

An example of an NNET layout is shown in Fig. 9.2. In this layout, there is
one input layer consisting of n input variables x three hidden layers, and one
output variable y. The first hidden layer has two nodes, the second hidden
layer has three nodes, and the third hidden layer has two nodes.

x1

x2

x3

xn

y

n FIGURE 9.2 Neural Network Structure.
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Chapter10
Estimating I-Star Market Impact Model

Parameters

INTRODUCTION
In this chapter we introduce a framework enabling readers to build, test, and
evaluate market impact models. We provide a methodology to estimate the
parameters of the much celebrated “I-Star” model. Readers should experi-
ment with alternative models to determine the most suitable framework
for their trading and investing needs.

Our estimation framework is based on the scientific method, a “process”
scientists use to achieve higher levels of knowledge and “quants” use to
achieve higher levels of accuracy. The scientific method is appropriate
from elementary school through Ph.D. dissertations through financial prac-
tice. Yet, at times, Wall Street analysts in their quest to achieve superior
returns and higher profits bypass this important research methodology.
And in cases where analysts do not adhere to scientific rigor, the results
are often disastrous and can reach losses in the hundreds of millions of
dollars.

The scientific method is an “experimentation process” whereby analysts ask
and respond to questions objectively. It provides the tools needed to
uncover the truth through rigorous experimentation and statistical testing.

Off the record comment: Managers, if your analysts are not following steps
provided here it might be time to replace your analysts. Analysts, if your
managers are not asking questions relating to this process, or they are not
properly scrutinizing results, it might be time to find a new job. Industry
professionals, if your vendors, brokers, consultants, or advisors are not
providing essential background material, statistical evidence, and model
transparency it is time to find new partners.
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Our objective in this chapter is twofold: (1) teach model building and
parameter estimation, and (2) help analysts expand their knowledge of
market impact modelsdsignificantly.

I-STAR MARKET IMPACT MODEL
The I-Star instantaneous market impact model has the formulation:

Ibp ¼ a1$Size
a4$sa3

We calculate the market impact in terms of percentage of volume (POV),
trade rate (a), and trade schedule (xk) as follows:

MIbpðPOVÞ ¼ b1$I
�$POVa4 þ ð1� b1Þ$I�

MIbpðaÞ ¼ bb1$I�$aa4 þ
�

1�bb1
�

$I�

MIbpðxkÞ ¼
X
n

k¼ 1

 

b1 $
I�

X
$

�

xk
xk þ vk

�1þa4
!

þ ð1� b1Þ$I�

where

Size ¼ order size expressed as in terms of average daily volume (ADV) as a
decimal:

Size ¼ X

ADV

ADV ¼ average daily volume
X ¼ total order shares
s ¼ annualized volatility (expressed as a decimal, e.g., 0.20)
POV ¼ percentage of volume:

POV ¼ X

X þ Vt
; 0 � POV � 1

a ¼ trading rate:

a ¼ X

Vt
; a � 0

xk ¼ shares to trade in period k:

X
n

k¼ 1

xk ¼ X; xk � 0
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Vt ¼ expected market over the trading interval excluding the order
shares X
vk ¼ expected market volume in period k excluding the order shares xk
a1, a2, a3, a4, b1 ¼ model parameters estimated via nonlinear estimation
techniques

SCIENTIFIC METHOD
The scientific method is used to pursue the truth in our quest for greater
knowledge. The steps are:

1. Ask a question
2. Research the problem
3. Construct a hypothesis
4. Test the hypothesis
5. Analyze the data
6. Conclusions and communication

Step 1: Ask a Question
A second grader may ask “Will my plant grow better using a white light
bulb or a yellow light bulb?” A Ph.D. candidate may ask “What is the
best monetary policy to stimulate GDP growth and hold back inflation in
a new electronic economy with no country borders and minimal barriers
to entry?” A Wall Street quant may simply ask “How much will my order
move the market?”

Step 2: Research the Problem
The second step is to learn as much as possible about the problem. It is
important to identify what has worked and what has failed to avoid rein-
venting the wheel and potential dead-end approaches and other pitfalls.
Ph.D. candidates will likely find that the literature review is one of the
most important stages in the dissertation process. To paraphrase Bernard
of Chartres and Isaac Newton, you will always reach higher heights
when standing on the shoulders of giants.

Step 3: Construct a Hypothesis
The third step is to predict a solution to the problem. In scientific terminol-
ogy, this is known as specifying a hypothesis. Our market impact model hy-
pothesis includes formulating a mathematical model using factors that have
been found to influence market price movement. It is important we develop
a model that is easily measured and focused on the problem. Models that
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cannot be measured or fail to answer our question should be cast aside. To
paraphrase Mr. Wonderful, models that cannot be measured or evaluated
should be taken out back and squashed.

Step 4: Test the Hypothesis
Step 4 of the scientific method involves fair, objective, unbiased experi-
ments. Here we perform hypothesis tests on parameters to ensure they are
statistically significant and to test the overall accuracy of the solution. In
addition, we undertake sensitivity analysis on parameters to uncover any
inherent limitations.

The experimental tests will either confirm that our (model) formulation is
appropriate and accurate, rule the model out, or suggest a revision or refor-
mulation of the model. Quite simply, does the model work, does it require
modification, or should it be thrown out?

This step also involves sensitivity analysis, evaluating errors, and perform-
ing what-if analysis surrounding extreme cases and possibilities (e.g., stress
testing the model). Here we want to learn just about everything we cand
where it works well, and where its limitations may reside. We use a control
data group for comparisons, that is, we perform an “out-of-sample” test uti-
lizing a data set not included in the calibration phase. Control groups are
used everywhere. In medicinedplacebo drugs. In physics and
engineeringdcontrolled experiments both with and without the factors
we are seeking to understand. Mathematicians and statisticians employing
machine learning techniques may elect to hold out say one-third of the
data sample to perform “out-of-sample” testing after model training.

If the model fails to predict accurate outcomes, revise your model formula-
tion or hypothesis if possible and return to step 3. You may determine in
this phase that the model/hypothesis is an inappropriate solution, which is
also a valuable piece of information. See “Simulating Neural Networks”
by Freeman (1994) for statistical out-of-sample testing procedures.

Step 6: Conclusions Communicate
Scientists communicate experimental results through wide-ranging mediums.

Wall Street for the most, however, fails to share technological advances,
particularly if a potential profit opportunity exists. The most accurate
models are usually kept under lock and key and provided only to their
top investors, or utilized by in-house trading groups.
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Mathematical models, like I-Star, offer researchers both a workhorse model
and a set of model parameters to assist in the decision-making processd
stock selection, portfolio construction, optimization, trading algorithms,
and black box modeling.

We now focus on applying the steps of the scientific method to estimate and
test our market impact model.

Solution Technique
The Question
“How much will my order cost me to trade?”

In other words, what premium do I need to add to my price to provide to the
market to attract additional sellers so I can complete my order; how much
do I need to discount my price to attract additional buyers so I can complete
my order?

Research the Problem
The research step for our market impact modeling problem consists of both
academic research (e.g., literature review) and analysis of actual data.

First, let us start with the academic literature. Madhavan (2000, 2002) are
regarded as the gold standard and ultimate starting point in the literature re-
view process. This provides a detailed review of relevant transaction cost
analysis research and the market microstructure literature leading up to
algorithmic trading. Almgren and Chriss (1997), Kissell and Glantz
(2003), Kissell, Glantz and Malamut (2004), Wagner (1991), Gatheral
(2010, 2012), and Domowitz and Yegerman (2006, 2011) all provide us
with a strong foundation and starting point for algorithmic trading and
key market findings. This literature should be studied.

Our review of the academic literature has provided academic evidence of
key relationships. Cost is dependent upon the number of shares traded
(e.g., trade size, total order size, or imbalance). This has been shown by
Loebb (1983), Holtausen, Leftwich and Mayers (1987), Chan and Lakonis-
khok (1993), Plexus Group (2000), and others. Empirical evidence reveals
that costs vary by volatility and market capitalization. For example, see
Stoll (1978), Amidhud and Mendelson (1980), Madhavan and Sofianos
(1998), Chan and Lakoniskhok (1995), Keim and Madhavan (1997), and
Breen, Hodrick and Korajczyk (2002) to name a few.
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Price impact results directly from trade and/or information leakage, as well
as the liquidity needs of the investor or institutional fund. Market conditions
over the trading period highly affect the underlying costs as well; see Bee-
bower and Priest (1980), Wagner and Edwards (1993), Perold and Sirri
(1993), Copeland and Galai (1983), and Stoll (1995). Additionally, there
has been numerous evidence presented by Kyle (1985), Bertismas and Lo
(1998), Grinold and Kahn (1999), and Almgren and Chriss (1999, 2000)
that finds that trading strategy (style) influences trading cost. Breen,
Hodrick and& Korajczyk (2002) provide a foundation for testing models,
which we utilize in the model error analysis section of the scientific method
(Step 5: Analyze the data).

These publications have a common underlying theme: price impact is
caused by order size, trading strategy (e.g., level of transaction urgency,
percentage of volume, participation rate, etc.), volatility, market capitaliza-
tion, side (buy/sell), as well as spreads and price.

Next, we observe and analyze actual customer order data. Our data obser-
vation universe consists of actual executed trades during a 3-month period
Jan-2010 through Mar-2010. While there are no specific steps to observe
and analyze data, we recommend visualization by plotting data and simple
analyses such as linear regression to uncover potential relationships.

As part of this step, we plotted the average trading cost (measured as the
difference between the average execution price and midpoint of the spread
at the time of the order arrival) as a function of several different variables,
including size, volatility, POV rate, and price. We segmented data into large
cap and small cap stock (as per our literature research findings). Stocks with
market capitalization of $2bn or more were classified as large cap stocks,
while stocks with market capitalization less than $2bn were classified as
small cap stocks. Traditionally, large cap stocks are categorized as stocks
with a market cap greater than $5bn, midcap stocks are categorized as
stocks with a market cap between $2 and $5bn, and small cap stocks are
categorized as stocks with market caps less than $2bn. We grouped midcap
stocks in the large cap or small cap categories based on actual market cap.
Readers are welcome to repeat steps in this chapter to determine if an addi-
tional category of stocks is needed.

There are several issues worth mentioning:

n First, share amounts traded were not necessarily the entire order. We
were not able to observe the number of unexecuted shares or opportunity
cost corresponding to the total order size. This may lead to survivorship
bias where orders with favorable price momentum are completed more
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often than orders with adverse market movement resulting in lower than
actual observed costs.

n Second, we were unable to observe actual specified trading strategy at
the beginning of trading. We do not know whether traders or managers
engaged in any opportunistic trading during the execution of the order.
This would occur in situations whereby traders became more aggressive
in times of favorable price momentum and less aggressive in times of
adverse price momentum, and might give the impression that trading
at faster rates could lead to lower costs than trading at a slower rate.
We only had access to the actual trading conditions and market volumes
over the trading horizon.

n Third, we did not discard data points or stocks. Readers and analysts
should remember that our research step is a learning step. All data points
should be included and observed to fully understand the underlying data
set and system at hand, including outliers.

n Fourth, we require at least 25 data points for each bucket; fewer than 25
data points does not provide a reasonable point estimate of the trade cost
for that particular interval. Unfortunately, the fourth requirement resulted
in mainly smaller trade sizes.

n Fifth, we did not know if these shares were part of a larger order where
parts were executed the previous day(s) and/or portions were to be
executed on subsequent day(s).

n Finally, the R2 statistic reported is the R2 for the grouped and averaged
data set. In these cases, the measure is often inflated; however, it does
provide insight into whether dependent variables are related to the inde-
pendent variable (e.g., trading cost). Here we are still in our learning
mode, so the R2 on grouped data indeed provides valuable insight.

Our graphical illustrations contained all data points. We computed buckets
for the x-value and then computed the average cost for all data points that fell
into that particular bucket. For example, we computed the average cost for
all order sizes that were 5% ADV (rounded to nearest 1% ADV). The
data points included in these intervals may have varying volatilities and
POV rates as well as prices. These variables will have some effect on the
actual cost of the trade. However, in this research and learn step, even this
type of averaging approach will yield some insight into the underlying rela-
tionships between cost and variable. Finally, the R2 statistic reported is the R2

for the grouped and averaged data set. In these cases, the measure is often
inflated; however, it does provide insight into whether the dependent vari-
ables are related to the independent variable (e.g., trading cost). Remember,
in this step we are still in our learning phase, so this R2 does indeed provide
valuable insight.
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Large cap stocks. Our large cap observations are shown in Fig. 10.1. Find-
ings mirror results in leading academic research. Costs were positively
related to size, volatility, and POV rate, and negatively related to price.
We ran a simple linear regression on the grouped data for each explanatory
variable separately. The strongest relationship (based on R2) for cost was size
(R2 ¼ 0.44). The second strongest relationship was with volatility
(R2 ¼ 0.40). This was followed by POV rate (R2 ¼ 0.36) and then price
(R2 ¼ 0.24). In each of these cases, visual inspection shows that the relation-
ship between cost and explanatory variable may be nonlinear.

Small cap stocks. Our small cap observations are illustrated in Fig. 10.2.
Our findings also reflected the academic research with large cap stocks.
Costs were positively related to size, volatility, and POV rate, and negatively
related to price. The simple linear regression on the grouped data and each
explanatory variable separately determined the strongest relationship for
cost was with volatility (R2 ¼ 0.71). The second strongest relationship
was with size (R2 ¼ 0.40). This was followed by POV rate (R2 ¼ 0.39)
and then price (R2 ¼ 0.12). Like the large cap universe, our visual inspection
of actual data shows that the relationship with small cap stocks and our vari-
ables also appears to be nonlinear.
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Market cap. We analyzed the relationship between trading costs and natural
log of market cap. This is shown in Fig. 10.3. Here the relationship is
negativedcosts are lower for larger stocks as well as nonlinear. Small cap
stocks were more expensive to trade than large cap stocks. The relationship
between trading cost and market cap was strong with R2 ¼ 0.70.

Spreads. Fig. 10.4 reveals costs as a function of spreads. Average spreads
over the day were rounded to the nearest basis point (bp). The relationship
between trading cost and spreads is positive such that stocks with higher
spreads show higher trading cost. The fit was R2 ¼ 0.13. Keep in mind, how-
ever, that spreads are a separate transaction cost component.
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Table 10.1 summarizes the results of our simple linear regression analysis of
cost on each variable separately. We include the standard error and t-stat,
along with coefficient and R2 for each regression.

y = 0.1892x + 5.952
R² = 0.1327
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n FIGURE 10.4 Cost as a Function of Spreads.

Table 10.1 Actual Trading CostsdSimple Linear Regression Results.

Large Cap Stocks

Size Volatility POV Price

Est. 150.72 11.44 19.86 �0.03
SE 33.89 3.37 3.72 0.01
t-stat 4.45 3.40 5.34 �3.48
R2 44% 40% 36% 24%

Small Cap Stocks

Size Volatility POV Price

Est. 221.62 19.60 37.42 �0.16
SE 53.24 3.00 6.25 0.09
t-stat 4.16 6.53 5.99 �1.87
R2 40% 72% 39% 16%

Stock Characteristics

Log Market Cap Price

Est. �2.93 �876.64
SE 0.30 175.68
t-stat �9.92 �4.99
R2 70% 37%

Notes:
Simple linear regression results
Costs were analyzed compared to each variable separately
These results are not that of a multilinear regression
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At this point, judicious analysts may prefer to perform additional analyses
on the data to evaluate linear versus nonlinear relationship, as well as the
correlation across explanatory factors and its effect on costs. For example,
larger orders are usually executed with higher POV rates and smaller orders
more often with lower POV rates. This unfortunately introduces a high de-
gree of correlation. Furthermore, smaller cap stocks typically have higher
volatility and larger cap stocks have lower volatility resulting in additional
negatively correlated variables.

It is important to account for these dependent variable dependencies when
you estimate the model’s actual parameters and testing statistical signifi-
cance. Our goal in the research step was simply to learn from the data
and we found that our data set was consistent with the previous research
findings and academic literature.

Construct a Hypothesis
Our hypothesis is that market impact cost follows a power function relation-
ship with size, volatility, and strategy (POV rate), and is comprised of a
temporary and permanent impact component. The formulation is the now
famous “I-Star” model:

I�bp ¼ a1$

�

S

ADV

�a2

$sa3

MIbp ¼ b1$I
�$POVa4 þ ð1� b1Þ$I�

where

I ¼ instantaneous impact cost expressed in bp
MI ¼ market impact cost expressed in bp
S ¼ shares to trade
ADV ¼ average daily volume
POV ¼ percentage of volume expressed as a decimal (e.g., 0.20)
s ¼ annualized volatility expressed as a decimal (e.g., 0.20)

a1, a2, a3, a4, b1 ¼ model parameters (estimated below)

Note that quite often we will rewrite our market impact model using the
variable Size as follows:

I�bp ¼ a1$Size
a2$sa3

where

Size ¼ Shares

ADV
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Test the Hypothesis
The fourth step in the scientific method consists of testing our hypothesis.
But before we start testing the hypothesis with actual data it is essential to
have a complete understanding of the model and dependencies across vari-
ables and parameters. We need to understand what results are considered
feasible values and potential solutions.

Let us start with the interconnection between the “a1” and “a2” parameters. Sup-
pose we have an order of 10% ADV for a stock with a volatility of 25%. If we
have I*¼ 84 bpand ba3 ¼ 0:75, then any combination of a1 and a2 that sat-
isfies the following relationship will have potential feasible parameter values:

I�bp ¼ a1$Size
a2$s0:75

Or

84bp ¼ a1$ð0:10Þa2$ð0:25Þ0:75

Solving for “a2” in the above formula yields:

a2 ¼ ln

�

I�

a1$sa3

�

$
1

lnðSizeÞ
Using the data in our example we have:

a2 ¼ ln

�

84
a1$0:25a3

�

$
1

lnð0:10Þ
However, not all combinations of a1 and a2 are feasible solutions to the
model. Having prior insight into what constitutes these feasible values
will assist dramatically when estimating and testing the model parameters.
For example, we know that a2> 0 otherwise costs would be decreasing
with order size and it would less expensive to transact larger orders than
smaller orders, and there would be no need to slice an order and trade
over time (not to mention an arbitrage opportunity).
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Fig. 10.5A illustrates this point by showing the combinations of a1 and a2 that
result in I*¼ 84 for 100� a1� 1250. But notice that for values of a1< 230 the
resulting a2 value is negative, thus violating one of our feasibility requirements.

Another relationship we have with the I-Star model is with parameter b1,
which is the temporary market impact parameter; in other words the percent-
age of instantaneous impact (I*) that is due to the liquidity needs of the
investor and/or immediacy needs. Thus we have by definition 0 � b1 � 1.

Next, suppose that we have a market impact cost of MI ¼ 25.3 bp for a
stock with volatility ¼ 25% and POV rate ¼ 30% with known parameters
a2 ¼ 0.50, a3 ¼ 0.75, and a4 ¼ 0.50.

In this example, we have a known value of MI but the value of I-Star is not
known. Then as long as the combination of a1 and b1results in MI ¼ 84 bp
the equation is correct.

The set of potential feasible solutions is that where we have b1 expressed in
terms of a1 as follows:

b1 ¼
�

MI

I�
� 1

�

$

�

1
POVa4 � 1

�

Using the data in our example we have:

b1 ¼
�

25:3
I�

� 1

�

$

�

1
0:300:5 � 1

�

Fig. 10.5B depicts the combinations of b1 and a1 resulting in a solution with
MI ¼ 84 bp. But notice that there are several combinations of a1 and b1 that
are not feasible solutions to the problem. Since we have a constraint on b1
such that 0 � b1 � 1 we additionally have 425 < a1 < 800. Furthermore,
empirical evidence has found b1 > 0.70, thus we have 625 < a1< 800.

Performing these types of sensitivity analyses around the model parameters
for those parameters with a known interval will greatly help analysts
critique models and results.

Underlying Data Set
The underlying data set needed to fit the I-Star model shown above in-
cludes: Q ¼ imbalance or order size, ADV ¼ average daily volume,
V* ¼ actual trading volume, s ¼ price volatility, POV ¼ percentage of
volume, and Cost ¼ arrival cost.
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There are four methodologies commonly used to infer order sizes and buye
sell imbalance. These are:

Lee andand Ready tick rule. Imbalance is defined as the difference be-
tween buy-initiated and sell-initiated trades in the trading interval. A positive
imbalance signifies a buy-initiated order and a negative imbalance signifies a
sell-initiated order. The Lee andand Ready tick rule maps each trade to the
market quote at that point in time. Trades at prices higher than midpoint of
the bideask spread are denoted as buy initiated and trades at prices lower
than the midpoint of the bideask spread are designated as sell initiated.
Trades exactly at the midpoint are designated based on the previous price
change. If the previous change was an uptick, we designate a buy-initiated
trade; a downtick a sell-initiated trade. The modified Lee andand Ready
tick rule assigns trades as buy or sell initiated based on price change. An up-
tick or zero-uptick is known as a buy-initiated trade and a downtick or zero-
downtick represents a sell-initiated trade. The proliferation of dark pools
prompted many practitioners to exclude trades that occurred inside bideask
spreads from being designed as buy or sell initiated. The difference between
buy-initiated and sell-initiated trades is denoted as the order imbalance, and
the volume-weighted average price (VWAP) over the period is used as a
proxy for the average execution price for the order and is used to compute
arrival cost.

Kissell Research Group (KRG) tick rule. KRG calculates buy-initiated
and sell-initiated volumes based on the stock’s price movement compared
to the expected price movement given the overall market movement. This
is like a single factor regression model or Capital Asset Pricing Model
(CAPM) regression model, but we use a beta sensitivity that is computed us-
ing daily open-to-close price change. For example, let a stock’s intraday
price return be estimated as follows:

bri ¼ b0 þ b1$rm

where ri ¼ ln(Pi/Pi�1) and rm ¼ ln(Indexi/Indexi�1). That is, stock return is
measured as the log price change from the previous trade, and market return
is measured as the log change in Index value over the same price period.

In this formulation, since we are using intraday price change measured from
tick to tick, the risk-free rate of return is zero (or at least negligible) result-
ing in the single factor regression model and CAPM being identical. Then,
calculate buy initiated and sell initiated as follows:

Side ¼

8

>

<

>

:

Buy Initiated; ri > b0 þ b1$rm
N=A; ri ¼ b0 þ b1$rm

Sell Initiated; ri < b0 þ b1$rm
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This gives an improvement over the Lee and Ready tick rule in an environ-
ment that is trending upward or downward. In an increasing market, the Lee
and Ready tick rule may incorrectly assign each trade to be buy initiated
resulting in 100% buying pressure over the day (e.g., buyesell imbal-
ance ¼ 100% or 100% buy-initiated volume). But if the stock has b ¼ 1
we would expect the stock to naturally increase by the same percentage as
the market, and therefore the buyesell imbalance ¼ 0%. In a decreasing
market, the Lee and Ready tick rule may incorrectly assign each trade to
be sell initiated resulting in 100% selling pressure over the day (e.g., buye
sell imbalance ¼ �100% or 100% sell-initiated volume). But if the stock has
b ¼ 1 we would expect the stock to naturally decrease by the same percent-
age as the market, and therefore the buyesell imbalance ¼ 0%.

If the stock return is exactly equal to its beta multiplied by the market return
(beta-adjusted market return), our buyesell imbalance calculation would
yield that the net buyesell imbalance ¼ 0, that is, buy volume ¼ sell vol-
ume. If there were more buy-initiated volume on the day, the stock return
would be up more than its beta-adjusted market return. If there is more
sell-initiated volume on the day, the stock return would be up less than its
market-adjusted market return. Assigning buy- and sell-initiated volumes
based solely on price change would result in an incorrect calculation in
trending markets, and may potentially incorrectly assign all trades as buy-
initiated or sell-initiated volume.

Order data. Broker-dealers and vendors (including order management sys-
tem and execution management system companies) have large investor order
databases. These actual order sizes and execution prices couple with the
stock-specific information and serve as input data for the model.

Customer order data. Investors maintain their own inventory of trades and
orders. Clients have access to the full order size and actual execution prices.
These data points are used for input into the model.

Pretrade of pretrades. Another technique that has become more popular
and is often used by portfolio managers is known as the pretrade of pretrade
approach. Investors use pretrade estimates provided by multiple broker-
dealers and/or vendors for various order sizes, strategies, and stocks. These
data points are used as input to the I-Star model, the results of which provide
a consensus of industry expectations. For additional insight see “Creating
Dynamic Pre-Trade Models: Beyond the Black Box” in the Journal of
Trading (Kissell, 2011).
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Using market data as opposed to actual customer order data will provide
three major benefits. First, it provides us with a completely independent
data set for estimation, allows us to use the customer order data set as
our control group, and will be used for comparison purposes. Second, using
the market data universe will allow us to eliminate some inherent biases in
the data due to potential opportunistic trading where investors trade faster
and larger quantities (shares are added to the order) in times of favorable
price momentum, and slower and in small quantities (shares or cancelled/
opportunity cost) in times of adverse price momentum. Third, this elimi-
nates situations where we (i.e., the broker or vendor) are not provided
with the complete order because it is traded over multiple days.

In practice, we found the KRG tick rule to provide improved results over
the Lee and Ready tick rule for the reasons stated above. Thus we use
the KRG tick rule to designate each trade as buy initiated or sell initiated.
Tick data are also known as time and sales data, and include the price of the
trade, the number of shares transacted, and date and time of the trade. The
data are available via the New York Stock Exchange (e.g., TAQ data for
trade and quote data) for all securities traded in the United States and/or
from various third-party data vendors.

Data Definitions
The data elements that need to be compiled and/or recorded are shown in
Table 10.2.

Table 10.2 Market Impact Data Sources.

Factor Data Source

Buy Volume TIC Data
Sell Volume TIC Data
Volume TIC Data
Turnover TIC Data
VWAP TIC Data
First Price TIC Data
Cost TIC Data
Imbalance TIC Data
ADV End of Day
Volatility End of Day
Size/Imbalance Derived
POV Derived
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Imbalance/Order Size
The I-Star model is calibrated using market imbalances calculated using the
KRG tick rule. That is:

Imbalance ¼ Buy Initiated Volume� Sell Initiated Volume

Average daily volume
ADV ¼ average daily trading volume. This metric is computed based on to-
tal market volume during exchange hours over a specified historical period
such as 20 or 30 days. There has been much discussion regarding the appro-
priate historical period to measure ADV and how the average should be
calculated. We address this issue in the chapter Volume Forecasting Models
and show how analysts can determine the best historical ADV measure for
their needs.

Actual market volume
V* ¼ actual market volume over the trading period. If the order was traded in
the market over the period from 9:30 a.m. to 4:00 p.m., then this measure is
the actual volume on the day, but if the order was traded over the period from
10:00 a.m. to 2:00 p.m., then this statistic is measured as total market volume
during the time the order was traded in the market, from 10:00 a.m. through
2:00 p.m.

Stock volatility
s ¼ annualized volatility expressed as a decimal, e.g., 0.20 and not 20% or
20. It is computed as the standard deviation of log price returns (close-to-
close) over the previous 20 or 30 days. The Journal of Trading article titled
“Intraday Volatility Models: Methods to Improve Real-Time Forecasts” pre-
sents techniques on how analysts can develop real-time volatility forecasts to
help improve trading decisions and algorithmic trading performance.

POV Rate
Percentage of volume ¼ computed as the market imbalance or customer or-
der size divided by the actual market volume that traded in the market during
the trading period. That is:

POV ¼ Q

V�
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Arrival Cost
Arrival cost ¼ the difference between the execution price of the order and
the arrival price of the order, e.g., the midpoint of the bideask spread at
the time the order was released to the market. This measure is usually
expressed in bp. That is:

Cost ¼ Side$
PAvg � P0

P0
$104bp

where

Pavg ¼ average execution price of the order
P0 ¼ arrival price

Side ¼
�þ1 if Buy

�1 if Sell

Imbalance Size Issues
Each of the previously discussed methodologies to derive our order imbal-
ance size is accompanied with some inherent limitations. These include:

1. Misidentification. Imbalance is inferred from the trade and may misiden-
tify buys as sells and vice versa.

2. Survivorship bias. Investors often allow orders that are trading well (inex-
pensive) to continue to trade and cancel those orders that are underper-
forming (expensive).

3. Small orders. Large concentrations of small orders cause results to be
skewed and be more accurate for small trades and potentially less accu-
rate for large trades.

4. Incomplete data set. Broker-dealers and vendors are often not familiar
with investors’ and portfolio managers’ intentions. They often observe
day orders from the fund only (the fund may give a large multiday order
to different brokers each day to disguise their trading intentions).

5. Overfitting. The universe of trades is executed in a very similar manner,
making it difficult to perform what-if analysis and evaluate alternative
trading strategies.

Model Verification
We introduce methods to test and verify results by first forecasting market
influence cost and timing risk using estimated parameters. Estimates are
compared to actual costs in four different ways.
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Model Verification #1: Graphical Illustration
Plot estimated and actual costs for various order sizes as a scatter graph
(cost as y-axis and size as x-axis). Compute the average cost for different or-
der sizes to eliminate market noise, making sure to incorporate enough ob-
servations in each size category to eliminate the effect of market noise.
Graphical illustration is the most helpful performance analysis for clients,
although it is the least helpful from a statistical perspective.

Model Verification #2: Regression Analysis
Run a regression between actual and estimated costs using all data. If the
forecasting model is accurate, then the regression results should show an
intercept statistically equal to zero and a slope statistically equal to one.
The R2 may be lower due to noise but the t-stat and f-value should be
very high implying a suitable model. This analysis will show visually if
the model is working well (e.g., all order sizes). Regression is the second
most useful tool to help clients evaluate our model, and the second most
effective statistical technique.

Model Verification #3: z-Score Analysis
This technique allows us to jointly evaluate both the accuracy of the market
impact and timing risk models. The test consists of computing a statistical
z-score to determine the number of standard deviations the actual cost was
from the estimated cost. The z-score is calculated as follows:

Z ¼ Actual� Cost Estimated Market Impact

Timing Risk

If the model is accurate we should find the average z-value to be close to
zero and the standard deviation (or variance) to be close to 1. That is, an ac-
curate model will have:

Zwð0; 1Þ
It is important that we compute and evaluate the z-statistic for various order
sizes and categories such as buys and sells, market cap, volatility, and so
forth to ensure the model is robust or if deficiencies exist.

The distribution of the z-statistic and the chi-square goodness of fit data test
will help evaluate the model statistically. This procedure has proven the most
useful tool to evaluate models from both a statistical basis and real-time
transaction cost analysis (e.g., in the algorithms or from a reporting
perspective).
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Model Verification #4: Error Analysis
We analyze the error term (regression residual) to determine if we ignored
factors driving trading cost. We compute the error term di (difference be-
tween estimated and actual) as follows:

di ¼ Estimated MI � Actual Cost

Then, we regress di on factors: market movement, side of order (buy vs.
sell), sector, order size (to determine robustness of fit), market cap, side,
and so forth. A statistically significant result would indicate that the “factor”
is a consistent contributor to trading cost.

Important note: Analysts should perform data verification across all sample
orders, grouping data into categories to determine bias. For example, you
should perform data verification by order size categories, side of the order
(buys and sells separately), sector, volatility, and market movement (up
days and down days). If bias is present, you need to discover where and
why bias occurred and follow through to solutions.

Stock Universe
The universe of stocks used for parameter estimation is the S&P1500. This
provides a robust sample of 500 large cap stocks, 400 midcap stocks, and
600 small cap stocks. Our analysis consisted of two groups. The first group
consisted of large cap and midcap stocks grouped together and small cap
stocks as the second group.

Analysis Period
We used 3 months of trade data for our analysis.

Time Period
Data were compiled for three time periods. Full day 9:30 a.m. to 4:00 p.m.,
morning 9:30 a.m. to 1:00 p.m., and afternoon 1:00 p.m. to 4:00 p.m.

Number of Data Points
There were 1500 stocks, three periods per day, and about 65 trading days
over the 3 months resulting in N ¼ 292,500 data points.

Imbalance
Daily imbalance is estimated from actual tick data during exchange hours
only (e.g., all trades between the hours of 9:30:00 a.m. and 4:00:00 p.m.,
or within our morning or afternoon periods). Data are first sorted in ascending
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order by time and trades are designated as buy initiated or sell initiated based
on the KRG tick rule. Buy-initiated trades are those trades that occurred at a
price higher than predicted by the intraday factor model. Sell-initiated trades
are those trades that occurred at a price lower than predicted by the intraday
factor model Trades that occurred at the expected price as predicted by the
model are designated as neither buy initiated nor sell initiated.

Imbalance is computed as the absolute difference between buy-initiated and
sell-initiated volume for the period. The calculation is as follows:

Q ¼
�

�

�

X

Buy Volume�
X

Sell Volume
�

�

�

Side
The side of the imbalance is “buy” if there is more buy-initiated volume and
“sell” if there is more sell-initiated volume. Mathematically, the side desig-
nation is:

Side ¼
(þ1 if

P

Buy Volume >
P

Sell Volume

�1 if
P

Sell Volume >
P

Buy Volume

Volume
Total market volume that traded over the same period used to calculate the
imbalance:

VðtÞ ¼
X
t

i¼ 1

vi

where “t” denotes the total number of trades during the period and vj is the
volume corresponding to the ith trade in the period.

Turnover
Turnover is the total dollar value traded during the trading period:

TurnoverðtÞ ¼
X
t

i¼ 1

pi$vi

where pi is the price of the ith trade.

VWAP
VWAP is the volume-weighted average price during the trading period:

VWAP ¼
Pt

i¼1pi$vi
Pt

i¼1vi
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First Price
The midpoint of the bideask spread at the beginning of the trading interval.
This is denoted as P0.

Average Daily Volume
The average daily-traded volume (ADV) in the stock over previous T
trading days. The value of T does vary by practitioner. For example, the
more common historical periods are 10, 22, 30, and 66 days of data. Earlier
we found that T ¼ 30 days of data are enough data points to measure the
mean:

ADV ¼ 1
T

X
T

i¼ 1

ViðdayÞ

where Vi(day) is the total volume that traded on the ith historical day (e.g., i
days ago).

Annualized Volatility
Annualized volatility is the standard deviation of close-to-close logarithmic
price change scaled for a full year using a factor of 250 days. Many prac-
titioners use a 252-day scaling factor. However, for our purposes, esti-
mating market impact, difference is negligible. Annualized volatility is
included in the market impact model as a proxy for price volatility. For con-
sistency, we use T ¼ 30 days of data to compute our volatility estimate:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

250
T � 1

X
T

i¼ 2

ðri � ravgÞ2
v

u

u

t

ri ¼ ln

�

Pi

Pi�1

�

where ri is the log return on the ith historical day and ravg is the average log
return over the period. It is important to note that our annualized volatility is
expressed as a decimal (e.g., 0.20 ¼ 20%).

Size
The imbalance size expressed as a percentage of ADV. It is expressed as a
decimal, that is, an imbalance size of 30% ADV is expressed as 0.30:

Size ¼ Q

ADV
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POV Rate
The POV rate is computed from imbalance and period volume. It is a proxy
for trading strategy. It is important to note that POV is expressed as a
decimal:

POV ¼ Q

VðtÞ

Cost
Cost is defined as the difference between average execution price and the
first price (expressed as a fraction of the initial price). It follows the defini-
tion of trading cost used in the implementation shortfall methodology (Per-
old, 1988). Here we compute cost as the logarithmic price change between
average execution price and arrival price. We use the VWAP over the inter-
val as our proxy for average execution price. This calculation is as follows:

Cost ¼ ln

�

VWAP

P0

�

$Side$104bp

Estimating Model Parameters
Estimation of parameters for the complete I-Star model requires nonlinear
estimation techniques such as nonlinear least squares, maximum likelihood,
generalized method of moments, etc. In the chapter Market Impact we
discuss three techniques, including a two-step process, a guesstimate, and
nonlinear regression analysis.

In this section we use nonlinear least squares regression techniques to esti-
mate the parameters of our model:

I ¼ a1$Size
a2$sa3

MI ¼ b1$I$POV
a4 þ ð1� b1Þ$I

These parameters are a1, a2, a3, a4, and b1.

Outliers. To avoid potential issues resulting from outliers we filtered our
data points based on daily stock volume and overall price movement. If
these data points were outside a specified range we excluded that data point.
Filtering is commonly done on market impact data sets to avoid the effect of
high price movement due to a force or market event that is not due to the
buying or selling pressure of investors.
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In our analysis we filtered the data to include only those data points with:

1. Daily volume �3 * ADV

2. �4,s
ffiffiffiffiffiffi

250
p � Log price change (close-to-close) �þ4,s

ffiffiffiffiffiffi

250
p

We decided to use four times the daily volatility to account for the potential
incremental price movement due to the buying or selling pressure in an
adverse momentum market. Analysts may choose to use different break
points as well as filtering criteria.

Factor independence. As is the case with any regression analysis we require
explanatory factors to be independent. Unfortunately, our derivation process
results in correlation across factors but this correlation is reduced by using
multiple time horizons (full day, morning, and afternoon). Analysts can
further reduce the correlation across factors through a sampling process
of the data where we select a subset of data points such that the cross-
factor correlation is within a specified level (e.g., �0.10 � rho � 0.10).
Our resulting data set had N ¼ 180,000 points and the resulting correlation
matrix is shown in Table 10.3.

Analysts can determine what is an acceptable level of cross-factor correla-
tion for their particular needs and determine the data sample set within these
criteria through a random sampling process.

Heteroskedasticity. Analysis of the complete model above reveals potential
heteroskedasticity of the error term. Each stock in the sample is different
volatilities and POV rates (resulting in different trading times) and a
different distribution of the error term. Kissell (2006) provided techniques
to correct for heteroskedasticity in this model. One important note, howev-
er, is that after grouping the data into bins there is not much difference
between the parameter estimation results without correcting for heteroske-
dasticity. We highly recommend analysts perform both analyses to under-
stand the dynamics of this model before deciding if the heteroskedasticity
step can be ignored.

Table 10.3 Factor Correlation Matrix.

Size Volatility POV

Size 1 �0.05 0.08
Volatility �0.05 1 �0.03
POV 0.08 �0.03 1
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Grouping data. Prior to performing our nonlinear regression, we grouped
our data into buckets to average away noise and to ensure a balanced
data set. Data were bucketed into categories based on size, volatility, and
POV rate according to the following criteria:

Size ¼ 0.5%, 1%, 2%, ., 30%
Volatility ¼ 10%, 20%, ., 80%
POV rate ¼ 1%, 5%, 10%, ., 65%

If we use grouping categories that are too small, we may find that there are
not enough data observations in each grouping category to have statistically
significant results.

Next, we averaged the costs for each category above. We required at least
25 observations for the bucket to be included in the regression analysis. We
required at least 25 data points to average away noise and determine the
most likely cost given the category of size, volatility, and POV rate.

Sensitivity Analysis
We discuss briefly that we need to ensure a solution with a feasible set of
parameter values. In other words, we are setting constraints on the model
parameters. These feasible values are:

100� a1 � 1000

0:10� a2 � 1:0

0:10� a3 � 1:0

0:10� a4 � 1:0

0:75� b1 � 1:0

It is important to note here that the feasible range of model parameters is
also dependent upon the current financial regime. For example, sensitivity
and parameter values during the financial crisis of 2008e09 could be
much different than during a low-volatility regime. Analysts need to contin-
uously evaluate what constitutes a feasible range for the parameters.

The process we used to determine the sensitivity of model results to these
parameters is as follows:

1. Start with parameter a1.
2. Set its value to a1 ¼ 100.
3. Solve the nonlinear least squares model with a1 ¼ 100 and the above

constraints on the other parameters.
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4. Record the resulting parameter values and nonlinear R2 estimate,

e.g.
�

a1 ¼ 100; a2 ¼ ba2; a3 ¼ ba3; a4 ¼ ba4; b1 ¼ bb1; R2
�

.

5. Increase the value of a1 (e.g., set a1 ¼ 150) and rerun the nonlinear least
squares regression, record the values, repeat until a1 ¼ 1000.

6. Repeat these steps for all the parameters, e.g., hold one parameter value
constant and solve for the other four. Record results.

7. Plot and analyze the results.

We performed the above analysis for all feasible values of the parameters.
For each parameter, a1, a2, ., b1, we plotted the specified parameter value
and the nonlinear R2 from the best fit nonlinear regression. For example, for
a1 ¼ 100, the best fit nonlinear R2 was R2 ¼ 0.23. For a1 ¼ 150, the best fit
nonlinear R2 was R2 ¼ 0.38, etc.

The results of our sensitivity analysis are shown in Fig. 10.6AeE.
Fig. 10.6A shows the results for parameter a1. The graph shows R2

increasing from 0.28 (at a1 ¼ 100) to a maximum value of R2 ¼ 0.41 (at
a1 ¼ 700), and then decreasing again to R2 ¼ 0.38. If we look at
Fig. 10.7A we find that the best fit R2 value varies very little between the
values a1 ¼ 600 to a1 ¼ 800. The best fit equation is flat between these
values. This type of result is not unique to the I-Star model; it is in fact
common across most nonlinear equations and is the reason we have been
stressing the need to perform a thorough sensitivity analysis on the data.

Fig. 10.6BeE illustrates the sensitivity analysis for a2 through b1. Parameter
a2 has its best fit value at about a2 ¼ 0.55 and appears to have a range be-
tween a2 ¼ 0.45 and a2 ¼ 0.65. Parameter a3 reaches its best fit at
a3 ¼ 0.75 with a range of about a3 ¼ 0.65 to a3 ¼ 0.80. Parameter a4 rea-
ches its maximum value at a4 ¼ 0.45 with a range of about a4 ¼ 0.4 to
a4 ¼ 1. Parameter b1 reaches its best fit at b1 ¼ 0.92 with a range of
b1 ¼ 0.87 to b1 ¼ 1.00. It is important to mention that the model is not high-
ly sensitive to parameters a4 or b1 and the best fit equation varies very little
within these ranges. For example, varying b1 between 0.87 and 1.00 results
in a non-R2 of 0.4070 (min) to 0.4087 (max). Notice how flat this curve is
even over the range 0.80e1.00. Thus it is no wonder why it has been so diffi-
cult in practice to uncover a difference between temporary and permanent
market impact cost.

We learn a valuable lesson from sensitivity analysisdit provides intuition
surrounding feasible values of the parameters as well as how much we
can expect those parameter values to vary. This is extremely useful in per-
forming what-if analysis and running alternative scenarios such as buy/sell,
large cap/small cap, etc. (as we show below).
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Next, we performed our nonlinear least squares regression for the full model
without holding any parameter value fixed. We allowed the model to deter-
mine the set of parameters using the specified constraints to ensure feasible
values. The results of the regression are shown in Table 10.4. The table in-
cludes parameter standard errors from the nonlinear regression and has a
nonlinear R2 ¼ 0.42. These statistical results indicate a strong fit. Addition-
ally, notice these results are all within the ranges we previously determined.
This provides more confidence in our results.

The best fit equation using these estimated parameters is.

I ¼ 708$Size0:55$s0:71

MI ¼ 0:98$I$POV0:50 þ ð1� 0:98Þ$I
To further evaluate costs and determine differences across categories we
further categorized the data into samples that consisted of large and small
cap companies, buy orders and sell orders, and a breakdown by market
cap and order size. In all cases, there was a high fit of the data. The nonlinear
R2 ranged from 0.40 to 0.43. These results are shown in Table 10.5.

Table 10.5 Estimated Market Impact Parameters.

Scenario a1 a2 a3 a4 b1 R2

All Data 708 0.55 0.71 0.50 0.98 0.42
Large Cap 687 0.70 0.72 0.35 0.98 0.43
Small Cap 702 0.47 0.69 0.60 0.97 0.43

Buy 786 0.58 0.74 0.60 0.90 0.43
Sell 643 0.44 0.67 0.60 0.98 0.43

LargedBuy 668 0.68 0.68 0.45 0.90 0.43
LargedSell 540 0.52 0.64 0.45 1.00 0.41

SmalldBuy 830 0.50 0.76 0.70 0.92 0.43
SmalldSell 516 0.71 0.69 0.10 0.90 0.40

Average 675 0.57 0.70 0.48 0.95 0.42

Table 10.4 Estimated Market Impact Parameters.

Scenario a1 a2 a3 a4 b1

All data 708 0.55 0.71 0.50 0.98
SE 100 0.03 0.02 0.05 0.04

R2 0.42
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An analysis of the cost estimates over time did not find any differences
across buy and sell orders when holding volatility and trading strategy con-
stant. However, in practice, managers and traders often find sell orders to be
costlier than buy orders for various reasons. First, buy orders are cancelled
more often than sell orders. As the price moves too high the advantage and
incremental alpha decreases and managers are better suited to investing in
an alternative stock. There are substitution stocks for buy orders but not
for sell orders. Once a stock has fallen out of favor and the manager decides
to remove the stock from the portfolio they will complete the order regard-
less of the price. Therefore managers do not always realize the entire cost of
the buy order because they rarely factor in opportunity cost. But the entire
cost of the sell order is always realized. Second, managers typically sell
stocks at a more aggressive rate than they buy stocks causing the cost to
be higher due to the corresponding urgency level and not due to any system-
atic difference in order side. Third, when managers decide to sell stocks that
have fallen out of favor it is often due to fundamentals and corresponds to
increased volatility and decreased liquidity, further increasing the cost to
trade. Managers often select stocks to hold in their portfolio under the
most favorable of market conditions, thus causing the buy orders to be
less expensive than the sell orders. Again, this is due to a difference in com-
pany fundamental and less favorable explanatory factors. It is not due to any
difference in cost due to the side of the order.

Analysis of costs by market cap, however, did find a difference in trading
costs. Large cap stocks were less expensive to trade than small cap stocks.
This difference was primarily due to small cap stocks having higher vola-
tility and increased stock-specific riskdboth causing a higher price elastic-
ity to order flow, e.g., increased market impact sensitivity. Additionally,
large cap stocks usually have a larger number of analyst coverages, there-
fore these stocks often have a lower quantity of information-based trading
and lower permanent impact. When the market observes increased trading
activity in small cap stocks it appears that the belief is due to
information-based trading. This is also true with small cap index managers
who do not try to hold the entire small cap universe but instead seek to
minimize tracking error to the index by holding a smaller number of stocks
from a universe that they believe will likely outperform the small cap index.

As stated previously, it is possible for the parameters of the model to vary
but still get the same cost estimates. Analysts interested in detailed differ-
ences across these categories can test the model using the parameters pub-
lished in Table 10.5.
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Cost Curves

Trading cost estimates can be computed for an array of order sizes and
trading strategies expressed in terms of POV rate. For example, using pa-
rameters for the all-data scenario, trading an order that is 10% ADV for a
stock with volatility ¼ 25% utilizing a full-day VWAP strategy is expected
to cost 23.2 bp. Trading this order more aggressively, say with a POV rate of
20%, will cost 30.9 bp. Trading the same order more passively, say with a
POV rate of 5%, will cost 17.2 bp.

Fig. 10.7 graphically illustrates trading cost estimates for this stock (vola-
tility ¼ 25%) for various order sizes ranging from 1% ADV through 50%
ADV for four different trading strategies: VWAP, POV ¼ 10%,
POV ¼ 20%, and POV ¼ 40%. This figure also shows the model has the ex-
pected concave shape.

Table 10.6 provides the underlying cost curve data grids for this order. These
cost curves provide the expected trading cost for various order sizes executed
using various trading strategies (VWAP and POV rates) in tabular form.
Cost curves (as will be discussed in later chapters) provide portfolio man-
agers with essential data required for stock selection, portfolio construction,
and optimization.

Statistical Analysis
We are now up to step 5 of the scientific method where we analyze the data.
In this step we compare the results of the model with the estimated param-
eter set to actual customer order data (the control group). We additionally
perform an error analysis where we compare the estimated costs to the
actual costs, and then perform a stock outlier analysis where we regress
the model error on stock-specific characteristics (such as market cap,
spread, idiosyncratic risk, etc.).

Error Analysis
The first step in our error analysis was to compute the estimated market
impact cost for each of the customer orders in the control group. But unlike
the research step where we used all the data points, here we filtered potential
outliers to ensure we were analyzing the price impact due to the order’s
buying and selling pressure. We filtered data points from the control group
identical to filtered data points derived from the market data cost section.
We filtered days with volume greater than three times ADV and days with
price movement greater than four times the stock’s daily volatility. We
used this filtering process because on these large volume and large price
movement days, the price change is more likely to be due to stock-specific
news or a market event rather than due to excessive buying or selling pressure.
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Table 10.6 Estimated Market Impact Curves.

Trading Strategy

Size(%
ADV) VWAP

POV
[ 5%

POV
[ 10%

POV
[ 15%

POV
[ 20%

POV
[ 25%

POV
[ 30%

POV
[ 35%

POV
[ 40%

1% 2.4 4.8 6.5 7.7 8.6 9.4 10.1 10.7 11.2
5% 11.7 11.7 15.8 18.8 21.1 23.0 24.6 26.0 27.3
10% 23.2 17.2 23.2 27.5 30.9 33.8 36.2 38.2 40.1
15% 34.5 21.6 29.1 34.5 38.8 42.3 45.3 47.9 50.2
20% 45.5 25.3 34.1 40.5 45.5 49.6 53.1 56.2 58.9
25% 56.1 28.6 38.6 45.8 51.5 56.1 60.1 63.6 66.6
30% 66.5 31.7 42.8 50.7 56.9 62.1 66.5 70.4 73.7
35% 76.6 34.5 46.6 55.2 62.0 67.7 72.5 76.6 80.3
40% 86.5 37.2 50.2 59.5 66.8 72.9 78.0 82.5 86.5
45% 96.1 39.7 53.6 63.5 71.3 77.8 83.3 88.1 92.3
50% 105.4 42.1 56.8 67.3 75.6 82.5 88.3 93.4 97.9
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Our error analysis consists of estimating the market impact cost for each of
the remaining data points. We then grouped these data points into 1% ADV
categories and graphically compared the results (Fig. 10.8A). We observed a
very strong and accurate fit for order size up to about 15% ADV and for sizes
of 20%e30% it appears that we are overestimating the actual cost.
Fig. 10.8B is an xy-scatter plot of estimated cost (y-axis) as a function of
actual cost (x-axis). This graph shows that our market impact model is accu-
rate for costs up to approximately 40e50 bp. Again, the model seems to
overestimate costs for larger more expensive orders. Fig. 10.8C plots the
actual error measured as the difference between estimated cost and actual
cost by order size. This figure gives the appearance that the model begins
to overestimate costs at around 10%e15% ADV.

The difference emerging here between estimated cost and actual cost is not
a concern for the larger more expensive orders due to survivorship bias and
opportunistic trading. That is, investors are more likely to complete the
larger size orders in times of favorable price momentum and lower cost
environment. Furthermore, investors are more likely to increase the original
order in times of more favorable prices. In times of adverse price movement
and a higher trading cost environment, investors are more likely not to com-
plete the order and cancel shares. This results in the actual measured costs
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being lower than they would have been had it not been due to price mo-
mentum and market conditions. Unfortunately, we do not have a full audit
trail in this case to be able to incorporate opportunistic trading and oppor-
tunity cost into our error analysis. But investors with a full audit trail will be
equipped to properly incorporate opportunity cost as well as survivorship
bias and opportunistic trading.

The next question is how far off is the estimated cost from actual cost for
the larger orders, especially considering some orders are exposed to much
greater market risk than others? To address this question we computed
the z-score for each of the orders. That is:

Z ¼ Actual Cost � Estimated MI

Timing Risk

The estimated timing risk is computed as:

TR ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
$
1
250

$Size$
1� POV

POV

r

$104bp

Regardless of the distribution of the error, if the model is accurate, the mean
z-score will be zero and the variance will be one. That is:

Zwð0; 1Þ
We computed the average z-score in each size bucket. This is shown in
Fig. 10.8D. This analysis shows that the risk-adjusted error is not as inaccu-
rate as it first appears. The average z-score for all order sizes, while signif-
icantly different from zero, is still within �1 standard deviation. To be
more exact, the z-score is �0.25 standard units for sizes up to 30% ADV.
Thus while the model is overestimating actual trading costs (likely due to
opportunistic trading and survivorship bias), the risk-adjusted error term is
not considered grossly erroneous. The error is quite reasonable and thus
not a large concern.

Stock-Specific Error Analysis
The next step in our error analysis is to determine if there is anything spe-
cific to the stock or company that would help improve the accuracy of the
model and reduce estimation error. For this step we follow the techniques
presented by Breen, Hodrick and Korajczyk (2002).

Our error analysis was carried out by estimating the expected market impact
cost using the parameters determined above and comparing these estimates to
the actual order costs. The average error measured as the estimated cost
minus actual cost was determined for each stock and the average z-score
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was also computed for each stock.We then regressed the error squared and the
z-score squared against stock-specific variables, including log market cap, log
price, spreads, beta, and tracking error. We chose to regress the squared error
and z-score metrics to determine which stock-specific variables if any would
assist us understand and reduce the model error at the stocks level.

Fig. 10.9AeE illustrates the regression results of the error squared as a func-
tion of the variables. As is consistent with previous research studies and ac-
ademic reports, the error term is negatively related to market cap and price.
Stocks with higher market capitalization and higher prices will have lower
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market impact cost. The error term is also positively related to spreads, beta,
and tracking error (as a proxy for idiosyncratic risk). This is consistent with
our expectations. Higher spreads are an indication of less stable trading pat-
terns and more intraday risk. Higher beta is an indication of riskier stocks
and a higher level of price sensitivity. Higher tracking error or idiosyncratic
risk is an indication of stock-specific risk, potentially higher information
content, and permanent market impact cost.

This error analysis provides some valuable insight and potential variables
for analysts to incorporate into the model to improve its accuracy. The
results of the regression coefficients for the stock-specific analysis for the
error squared and the z-score squared are shown in Table 10.7.

Table 10.7 Stock-Specific Error Analysis.

Log Market Cap Log Price Spreads Beta TE

Error2

Est. �99.65 �158.30 5.72 267.28 131.74
SE 8.75 15.64 0.62 37.03 11.54
t-stat �11.39 �10.12 9.28 7.22 11.41

Z-Score2

Est. �0.011 �0.015 0.001 0.019 0.011
SE 0.002 0.003 0.000 0.008 0.002
t-Stat �6.046 �4.647 7.327 2.544 4.715
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Chapter11
Risk, Volatility, and Factor Models

INTRODUCTION
In this chapter, we discuss price volatility and factor models and how they
can be used to improve trading performance. We present various techniques
that are used in the industry to forecast volatility as well as appropriate
methods to calibrate these models.

Volatility is the uncertainty surrounding potential price movement, calcu-
lated as the standard deviation of price returns. It is a measure the potential
variation in price trend and not a measure of the actual price trend. For
example, two stocks could have the same exact volatility but much different
trends. If stock A has volatility of 10% and price trend of 20%, its one
standard deviation return will be between 10% and 30%. If stock B also
has volatility of 10% but price trend of 5% its one standard deviation return
will be between �5% and 15%. Stock with higher volatility will have larger
swings than the stock with lower volatility resulting in either higher or
lower returns.

There are two volatility measures commonly used in the industry: realized
and implied. Realized volatility is computed from historical prices and is
often referred to as historical volatility. Realized volatility uses historical
data predict the future. Implied volatility, on the other hand, is computed
from the market’s consensus of the fair value for a derivative instrument
such as the S&P500 index option contract. Implied volatility is a “forward”
looking or “future” expectation estimate.

Historical Volatility lets the data predict the future

Implied Volatility lets the market predict the future

We utilize volatility in many ways. For example, traders use volatility to
understand potential price movement over the trading day, as input into
market impact models, to compute trading costs, and to select algorithms.
Algorithms use volatility to determine when it is appropriate to accelerate
or decelerate trading rates in real-time. Portfolio managers use volatility
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to evaluate overall portfolio risk, as input into optimizers, for value-at-risk
(VaR) calculations, as part of the stock selection process, and to develop
hedging strategies. Derivatives desks use volatility to price options and other
structured products. In addition, plan sponsors use volatility to understand the
potential that they will or will not be able to meet their long-term liabilities
and financial obligations. Volatility is a very important financial statistic.

VOLATILITY MEASURES
In finance, returns are measured as log-returns (e.g., geometric returns)
because prices are log normally distributed. These calculations are as
follows:

Log-Returns
Log-returns will be denoted simply as returns going forward. Returns are
calculated as follows:

rt ¼ lnðPt =Pt�1Þ
where

Pt¼ stock price at time t.

lnð $Þ represents the natural logarithm function.

Average Return

EðrÞ ¼ 1
n
$
X
n

t¼ 1

rt

When using log-returns, the average can also be computed directly from the
first and last price as follows:

EðrÞ ¼ 1
n
$ln

�

Pt

Pt�n

�

Variance
Variance is calculated as follows:

s2 ¼ 1
n� 1

$
X
n

t¼ 1

ðrt � rÞ2

In this formulation, r is the sample mean and we divide by (n � 1) to ensure an
unbiased estimator. This formulation is also called the sample standard
deviation.
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Volatility
Volatility is calculated as the standard deviation of price returns.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n� 1

$
X
n

t¼ 1

ðrt � rÞ2
s

Covariance
The covariance of returns for two stocks x and y is denoted in industry as
cov(x,y) and also as sxy. Covariance is calculated as follows:

covðx; yÞ ¼ 1
n� 2

$
X
n

t¼ 1

�

rxt � rx
��

ryt � ry
�

where,

rxt, ryt represent the return of stock x and stock y on day t, respectively.
rx; ry represent the mean return of stock x and stock y, respectively.

Notice that we are dividing by (n�2) to ensure an unbiased estimator.

Correlation
The correlation between two stocks x and y denoted rho(x,y) or as rxy is
calculated as the covariance divided by the volatility of each stock. This
calculation provides a normalization of the covariance measure and ensures
that �1� rxy�1. This is:

rxy ¼
covðx; yÞ
sx$sy

Stocks with a correlation of rxy¼1 move perfectly in sync with one another,
stocks with a correlation of rxy¼�1 move perfectly in the opposite direction
with one another, and stocks with a correlation of rxy¼0 do not move
together at all. Correlation provides a measure of the strength of
co-movement between stocks.

Dispersion
The dispersion of returns is the standard deviation of returns for a group of
stock. It is a cross-sectional measure of overall variability across stocks.
Dispersion is calculated as follows:

DispersionðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m� 1

$
X
m

k¼ 1

�

rkt � rt
�2

s
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where,

rkt is the return for stock k on day t.
rt is the average return on day t across all m stocks.

Dispersion is very useful to portfolio managers because it gives a measure
and how close they are moving of how stocks move in conjunction with one
another. A small dispersion metric indicates that the stocks are moving up
and down together. A large dispersion metric indicates that the stocks are
not moving up and down together.

Value-at-Risk
VaR is a summary statistic that quantifies the potential loss of a portfolio.
Many companies place limits on the total VaR to protect investors from po-
tential large losses. This potential loss corresponds to a specified probability
a or alternatively a (1�a) confidence interval.

If returns from portfolio follow a normal distribution, that is, rwN
�

rp; s2p

�

,

then the VaR estimate for a specific alpha level of a¼a* is found from the
cumulative normal distribution as follows:

a� ¼
Z
N

�N

1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p

q $exp

(

� ðr � rpÞ2
2sp

)

dr

This is also at times more conveniently written as:

F�1ða�Þ

IMPLIED VOLATILITY
Implied volatility is determined from the price of a call or put option. For
example, the BlackeScholes option pricing model determined the price
of a call option as follows:

C ¼ S$Nðd1Þ � X$erfT$Nðd2Þ
Where,

d1 ¼
lnðS=XÞ þ

�

rf þ 1
2
s2

�

T

s
ffiffiffiffi

T
p

d2 ¼ d1 � s
ffiffiffiffi

T
p
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C ¼ Call Price
X ¼ Strike Price
S ¼ Stock Price
s ¼ Stock Volatility
N(d) ¼ probability that actual return will be less than d
rf ¼ risk free rate of return
T ¼ future period

The implied volatility is the value of the volatility in the above formula that
will result in the current value of the call option. Since the call option price
is determined by the market, we are able to back into the volatility terms
that would provide this value, thus, the volatility implied by the formula-
tion. Implied volatility is most often solved via nonlinear optimization
techniques.

Beta
The beta of a stock represents the stock’s sensitivity to a general market
index. It is determined as the covariance of returns between the stock and
the market divided by the variance of the index (volatility squared). The
calculation is also the slope of the regression line of stock returns
(y-axis) as a function of market returns (x-axis). Beta is calculated as
follows:

bk ¼
covðrk; rmÞ
varðrmÞ

Stocks with a positive beta bk>0 move in the same direction as the market
and stocks with a negative beta bk<0 move in the opposite direction of the
market. Stocks with an absolute value of beta greater than one jbkj>1 are
more volatile than the market and stocks with an absolute value of beta
less than one jbkj<1 are less volatile than the market.

Range
The range is a measure of the stock’s price movement over the day as a
percentage of its average price on the day. The range is calculated as
follows:

Range ¼ maxðPtÞ �minðPtÞ
avgðPtÞ

Where,

Pt represents all trade prices for the stock on day t.
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FORECASTING STOCK VOLATILITY
In this section, we described different volatility-forecasting models and tech-
niques to estimate model parameters. These volatility-forecasting models are:

n Historical Moving Average (HMA)
n Exponential Weighted Moving Average (EWMA)
n Autoregressive Models (ARCH and GARCH)
n HMA-VIX Adjustment

Some of these descriptions and our empirical findings presented have been
disseminated in Journal of Trading’s “Intraday Volatility Models: Methods
to Improve Real-Time Forecasts,” Fall 2011.

Volatility Models
We describe four different volatility models: the historical moving average
(HMA), the exponential weighted moving average (EWMA) introduced by
JP Morgan (1996), an auto-regressive heteroscedasticity (ARCH) model
introduced by Engle (1982), a generalized auto-regressive conditional
heteroscedasticity (GARCH) introduced by Bollerslev (1986), and an
HMA-VIX adjustment model that combines the stock’s current realized
volatility with an implied volatility measure.1

Returns
Returns are computed using log-returns as follows:

yt ¼ lnðPt =Pt�1Þ
Then, a general short-term model of return is:

yt ¼ C þ stεt

where C is a constant, εt is noise from a standard normal distribution
εtwN(0,1), and st is the time varying volatility component. In practice,
the short-term constant term C is rarely known in advance and analysts often
use a simplifying assumption of C¼0. Then general short-term price returns
model simplifies to:

yt ¼ stεt

1The HMA-VIX volatility model was presented at Curt Engler’s CQA/SQA Trading
Seminar (February 2009), “Volatility: Is it safe to get back in the water?” and taught as
part of the volatility section in Cornell University’s Graduate Financial Engineering Pro-
gram, “Introduction to Algorithmic Trading.” Fall 2009 (Kissell and Malamut). The
HMA-VIX Model was also published in Journal of Trading, “Intraday Volatility Models:
Methods to Improve Real-Time Forecasts,” Fall 2011.

274 CHAPTER 11 Risk, Volatility, and Factor Models



Historical Moving Average (HMA)
The HMA volatility measure is computed by definition:

st ¼ 1
n� 1

$
X
n

k¼ 1

y2t�k

This is a simple unbiased average of squared returns (since we are taking
the trend term to be C¼0). The advantage of this approach is that the
calculation straight forward. The disadvantage is that the HMA assumes
returns are independent and identically distributed with constant variance.

Exponential Weighted Moving Average (EWMA)
The EWMA is computed as follows:

bs
2
t ¼ ð1� lÞ$y2t�1 þ l$bs

2
t�1

EWMA applies weights to the historical observations following an expo-
nential smoothing process with parameter l where 0�l�1. The value of
the smoothing parameter is determined via maximum likelihood estimation
(MLE). JP Morgan (1994) first introduced this model as part of their Risk
Metrics offering.

The advantage of the EWMA is that it places more emphasis on the recent
data observations. This allows the model to quickly update in a changing
volatility environment. Additionally, its forecasts only require the previous
period price change and the previous volatility forecast. We do not need to
recalculate the forecast using a long history of price returns.

ARCH Volatility Model
The ARCH volatility model was introduced by Engle (1982) and consists of
the “p” previous returns. We can formulate as follows:

bs
2
t ¼ uþ

X

p

i¼ 1

aiy
2
t�i

where u>0, a1,a2,.ap>0 ,
P

ai<1.

A simple ARCH(1) model on consists of the previous day’s price return.
This is formulated as:

bs
2
t ¼ uþ a$y2t�1

with,

u > 0 and 0 < a < 1
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GARCH Volatility Model
The GARCH volatility model was introduced Bollerslev (1986) and is an
extension of ARCH model (Engle, 1982). A GARCH(p,q) model consists
of “p” previous returns and “q” previous volatility forecasts as follows:

bs
2
t ¼ uþ

X

p

i¼ 1

aiy
2
t�i þ

X

q

j¼ 1

bibs
2
t�i

where u>0, a1,a2,.ap,b1,b2,.bp>0 ,
P

aiþ
P

bj<1.

The GARCH model applies more weight to the more recent observations
thus allowing the model to quickly adapt to changing volatility regimes.
The parameters of the model are determined via MLE.

A simple GARCH(1,1) model consists of only the previous day’s price
return and previous day’s volatility forecast and is formulated as:

bs
2
t ¼ uþ a$y2t�1 þ b$s2

t�1

with,

u> 0 and 0 < aþ b < 1

HMA-VIX Adjustment Model
The HMA-VIX volatility-forecasting model is an approach that combines
the stock’s current volatility with an implied volatility estimate. We
formulate this model as:

bst ¼ st�1$
VIXt�1

sðSP500Þt�1

$AdjFactor

where,

st�1 ¼ the stock’s HMA trailing volatility, e.g., the stock’s realized
volatility
sðSP500Þt�1 ¼ the SP500 Index HMA trailing volatility, e.g., the SP500
Index’s realized volatility
VIXt�1 ¼ the VIX implied volatility index
AdjFactor ¼ is an adjustment factor to correct for the risk premium
embedded in the VIX contract prices.

Over the years the options market has proven to be a valuable, accurate, and
timely indicator of market volatility and changing regimes. Options traders
are able to adjust prices quickly based on changing volatility expectations.
Analysis can easily infer these expectations through the options prices. This
is known as the implied volatility. The question arises then if implied
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volatility is an accurate and timely estimate of volatility, why cannot
analysts just use implied volatility from the options market rather than
use results from these models? The answer is simple. Unfortunately,
implied volatility estimates do not exist for all stocks. The options market
at the stock level is only liquid for the largest stocks. Accurate implied
volatility estimates do not exist across all stocks. Fortunately, the options
market still provides valuable information that could be extended to the
stock level and help provide accurate forward-looking estimates, and in a
timelier manner than the other historical technique. This also provides
ways for algorithms to quickly adjust to changing expectations in
real-time and provide investors with improved trading performance.

The HMA-VIX is technique consists of adjusting the stock’s trailing
volatility by the ratio of the VIX Index to the SP500 trailing volatility
plus a correction factor. The ratio of the VIX to the SP500 realized shows
whether the options market believes that volatility will be increasing or
decreasing. However, since the VIX usually trades at a premium of 1.31
to the SP500 trailing volatility we need to include an adjustment factor to
correct for this premium. If the VIX Index/SP500 realized volatility
>1.31 then we conclude that the options market believes volatility will
be increasing and if the VIX Index/SP500 realized volatility <1.31 then
we conclude that the options market believes will be decreasing.

An advantage of incorporating the implied expectations into our real-time
volatility estimator is that if there is a sudden market event that will affect
volatility it will almost immediately be reflected in the HMA-VIX measure.
The historical models (HMA, EWMA, ARCH, and GARCH) will not react
to the sudden market event until after this event has affected stock prices.
Thus, the historical models will always be lagging behind the event to
some degree. Furthermore, if the options market is anticipating an event
that has not yet occurred, and priced the uncertainty of the event into its
prices, the HMA-VIX model will also reflect anticipated event and
increased uncertainty prior to that event taking place. Just the worry of a
potential event taking place will be reflected in the HMA-VIX model.
Models updated nightly will miss this event and will not necessarily
provided timely accurate volatility estimates.

Determining Parameters via Maximum Likelihood
Estimation
Parameters of the models above, ARCH, GARCH and EWMA volatility
models can be estimated via MLE). An overview of the estimation process
is as follows:
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Likelihood Function
Let log price returns be normally distributed with mean zero and time vary-
ing volatility, that is, ytwN

�

0; bs2t
�

. Then the probability density function
(pdf) of these returns at any time is:

f
�

yt; bs
2
t

� ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pbs2
t

q $e
� y2t

2ŝ2t

The likelihood of achieving the observed series of returns is:

L ¼
Y
n

t¼ 1

1
ffiffiffiffiffiffiffiffiffiffi

2pbs2
t

q $e
� y2t

2ŝ2t

The log-likelihood function ln(L) is then:

lnðLÞ ¼
X
n

i¼ 1

 

� 1
2
lnð2pÞ� 1

2
ln
�

bs
2
t

�� 1
2
$
y2t
bs
2
t

!

which yields,

lnðLÞ ¼
X
n

i¼ 1

�ln
�

bs
2
t

�� y2t
bs
2
t

The parameters of our volatility-forecasting models are estimated by
maximizing ln(L). This can be found be finding first order conditions,
e.g., set each partial derivative equal to zero and solve. There will need to
be one partial derivative for each parameter we set out to estimate.

These parameters can also be estimated via mathematical optimization
packages. In these cases, it is important for the analyst to understand if
the mathematical optimization algorithm finds the maximum or minimum
value. In many cases, the optimization package will minimize the equation
and analyses will need to minimize the negative of the log-likelihood
function, e.g., �ln(L), as follows:

�lnðLÞ ¼
X
n

i¼ 1

ln
�

bs
2
t

�þ y2t
bs
2
t

Measuring Model Performance
We compared the HMA-VIX technique to the HMA, EWMA, and general-
ized autoregressive conditional heteroscedasticity (GARCH) models. We
evaluated the performance of the volatility models using three different
criteria: root mean square error (RMSE), root mean Z-Score squared error
(RMZSE), and an outlier analysis.
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Menchero et al. (2012) and Patton (2011) provide an in-depth discussion of
alternative volatility evaluation statistics that can be used to further critique
the accuracy of these models. Our usage of these aforementioned
performance statistics is to provide a point of comparison across techniques.
These procedures are:

Root Mean Square Error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
$
X

ðbst � stÞ2
r

The RMSE is simply the difference squared between the estimated volatility
bst and realized volatility st where the realized volatility is calculated as
st ¼ ffiffiffiffiffi

y2t
p ¼ rt.

This technique follows the more traditional statistical tests such as
minimizing sum of squares used in regression analysis.

Root Mean Z-Score Squared Error (RMZSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
$
X

�

yt
bst

� 1

�2
s

The RMZSE is a measurement of the squared difference between our test
statistic z from one.

This test is derived as follows.

Let, z ¼ y�m
s
, then we have we have E(z)¼0 and Var(z)¼1.

Since we have ytwNð0; bstÞ our test statistics z can be written as zt ¼ yt
st
with

variance of zt being Var(zt)¼1.

The RMZSE is then a test of how close the test statistic is to its theoretical
value.

Outlier Analysis
The outlier analysis is another measure of volatility model performance
used in algorithmic trading. This metric is a measure of the number of
outliers results from each volatility model where outliers are defined as
returns greater than three standard deviations. That is:

Outlier if

	

	

	

	

yt
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> 3
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The outlier analysis consists of determining the total number of outliers
observed based on the predicted volatility from each model. If the absolute
value of price return for the index was greater than three times the
forecasted standard deviation for the index on that day, the observation
was counted as an outlier. The goal of the outlier analysis was to determine
which model resulted in the fewest number of surprises.

It is important to note here that the outlier analysis is to be used in conjunc-
tion with one of the tests mentioned above. As it is obvious that by setting
the estimated volatility very large there will not be any calculated outliers.

Advantages of the HMA-VIX Volatility Model over more traditional
techniques.

In the world of algorithmic trading where real-time information is crucial
and essential for trading purposes, the HMA-VIX Volatility Model has
been found to be react quicker to market information that the more
traditional approaches and many cases. Our findings for the HMA-VIX
are that it:

n Reacts to new information sets prior to those events affecting prices.
Historical models will only react to new information after it has already
affected prices. There is always some degree of lag when using historical
models or models based on realized prices.

n Incorporates real-time information from the options market, e.g.,
forward-looking implied volatility, across the full universe of stock.
Implied stock volatility is only available for a very limited number of
stocks

n Provides necessary real-time volatility estimates that can be incorporated
into trading applications and electronic trading algorithms.

n Allow algorithms to make real-time revision to their execution strategies,
limit order model, and smart order routing logic in real time.

n Performed as well as, and in some cases, better than some of the more
traditional volatility-forecasting models.

HISTORICAL DATA AND COVARIANCE
In finance, there are issues that arise from using historical data if the data is
not fully understood. Misuse of these data can have a dire effect on trading
performance and is a leading cause of large portfolio losses that rely on
proper risk analytics.
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In this section we want to highlight two issues that may arise when relying
on historical data to calculate covariance and correlation across stocks.
These are:

n False Relationships
n Degrees of Freedom

False Relationships
It is possible for two stocks to move in same direction and have a negative
calculated mathematical covariance and it is possible for two stocks to move
in the opposite direction and have a positive calculated mathematical
covariance. The mathematical definition of covariance is a measure of the
co-movement of excess returns of each stock and not necessarily the
co-movement of prices. It is calculated as follows:

covðx; yÞ ¼ E½ðx� xÞðy� yÞ�
It is quite possible for two stocks to have the same exact trend but whose
errors (noise term) are on opposite sides of the trend lines. This is explained
in the following two examples:

Example #1: False Negative Signal Calculations
Table 11.1 contains the data for two stocks A and B that are moving in the
same direction. Fig. 11.1A illustrations this movement over 24 periods. But
when we calculate the covariance between these stocks we get a negative
correlation, rho ¼ �0.71. How can stocks that move in the same direction
have a negative covariance term? The answer is due to the excess terms
being on opposite sides of the price trend. Notice that these excess returns
are now on opposite sides of the trend which results in a negative covariance
measure. The excess returns are indeed negatively correlated but the
direction of trend is positively correlated. This is shown in Fig. 11.1B.

Example #2: False Positive Signal Calculation
Table 11.2 contains the data for two stocks C and D that are moving in oppo-
site directions. Fig. 11.2A illustrations this movement over 24 periods. But
when we calculate the covariance between these stocks we get a negative
correlation, rho ¼ þ0.90. How can stocks that move in the same direction
have a negative covariance term? The answer is due to the excess terms
being on the same side of the price trend. Notice that these excess returns
are now on opposite sides of the trend which results in a negative covariance
measure. The excess returns are indeed positively correlated but the direction
of trend is negatively correlated. This is shown in Fig. 11.2B.
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Table 11.1 False Negative Signals.

Period Market Prices Period Returns Excess Returns

A B A B A B

0 10.00 20.00

1 11.42 22.17 13.3% 10.3% 7.0% 5.3%

2 11.12 25.48 �2.6% 13.9% �8.8% 8.9%

3 12.60 28.62 12.5% 11.6% 6.3% 6.6%

4 12.96 33.56 2.8% 15.9% �3.4% 10.9%

5 16.91 30.59 26.6% �9.3% 20.4% �14.3%

6 17.63 33.58 4.2% 9.3% �2.0% 4.3%
7 17.78 37.86 0.8% 12.0% �5.4% 7.0%

8 19.93 38.93 11.4% 2.8% 5.2% �2.2%

9 23.13 38.94 14.9% 0.0% 8.7% �5.0%

10 24.21 39.64 4.6% 1.8% �1.6% �3.2%

11 23.39 46.32 �3.5% 15.6% �9.7% 10.6%

12 23.92 49.59 2.3% 6.8% �3.9% 1.8%

13 25.50 51.45 6.4% 3.7% 0.2% �1.3%

14 23.97 56.96 �6.2% 10.2% �12.4% 5.2%
15 27.35 56.60 13.2% �0.6% 7.0% �5.6%

16 31.27 57.37 13.4% 1.3% 7.2% �3.7%

17 30.03 61.26 �4.0% 6.6% �10.2% 1.6%

18 36.04 61.02 18.2% �0.4% 12.0% �5.4%

19 32.01 67.66 �11.9% 10.3% �18.1% 5.3%

20 33.16 69.90 3.5% 3.3% �2.7% �1.7%

21 37.32 66.33 11.8% �5.2% 5.6% �10.2%

22 34.71 73.60 �7.3% 10.4% �13.5% 5.4%
23 39.08 71.58 11.9% �2.8% 5.7% �7.8%

24 44.33 66.43 12.6% �7.5% 6.4% �12.5%

Avg: 6.2% 5.0% 0.0% 0.0%

Correl: �0.71 �0.71
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To correct for the calculation of covariance and correlation it is advised to
compare stock price movement based on a common trend (such as the
market index) or a multi-factor model. Factor models are discussed further
below in this chapter.

Degrees of Freedom
A portfolio’s covariance matrix consists of stock variances along the
diagonal terms and covariance terms on the off diagonals. The covariance
matrix is symmetric matrix since the covariance between stock A and stock
B is identical to the covariance between stock B and stock A.
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n FIGURE 11.1 False Negative Signal Calculations.
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Table 11.2 False Positive Signals.

Period Market Prices Period Returns Excess Returns

C D C D C D

0 60.00 50.00

1 65.11 50.82 8.2% 1.6% 5.5% 5.1%

2 63.43 45.93 �2.6% �10.1% �5.3% �6.6%

3 71.51 47.43 12.0% 3.2% 9.3% 6.7%

4 60.90 37.31 �16.1% �24.0% �18.7% �20.5%

5 93.93 58.09 43.3% 44.3% 40.7% 47.8%

6 85.83 50.77 �9.0% �13.5% �11.7% �10.0%
7 68.19 28.10 �23.0% �59.2% �25.7% �55.7%

8 73.95 36.34 8.1% 25.7% 5.5% 29.2%

9 88.56 42.51 18.0% 15.7% 15.4% 19.2%

10 100.69 52.41 12.8% 20.9% 10.2% 24.4%

11 95.29 40.31 �5.5% �26.3% �8.2% �22.8%

12 112.56 42.10 16.7% 4.3% 14.0% 7.8%

13 99.59 37.12 �12.2% �12.6% �14.9% �9.1%

14 95.56 30.63 �4.1% �19.2% �6.8% �15.7%
15 103.88 34.49 8.3% 11.9% 5.7% 15.4%

16 119.10 44.81 13.7% 26.2% 11.0% 29.7%

17 100.88 24.90 �16.6% �58.7% �19.3% �55.3%

18 117.90 33.90 15.6% 30.9% 12.9% 34.3%

19 143.46 39.28 19.6% 14.7% 17.0% 18.2%

20 118.28 28.70 �19.3% �31.4% �22.0% �27.9%

21 108.05 18.39 �9.0% �44.5% �11.7% �41.0%

22 137.49 34.52 24.1% 63.0% 21.4% 66.5%
23 147.63 41.95 7.1% 19.5% 4.4% 23.0%

24 113.77 21.63 �26.1% �66.2% �28.7% �62.7%

Avg: 2.7% �3.5% 0.0% 0.0%

Correl: 0.90 0.90
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If a portfolio consists of n-stocks the covariance matrix will be n x n and
there will be n2 total elements.

The number of unique covariance parameters can also be determined from:

# Unique Covariance ¼
�

n

2

�

¼ nðn� 1Þ
2
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The number of total unique elements “k” in the n x n covariance matrix is
equal to the total number of variances plus total number of unique covariance
terms. This is:

k ¼ nþ nðn� 1Þ
2

¼ nðnþ 1Þ
2

This is illustrated in Fig. 11.3A.

In order to accurately estimate these total parameters, we need a historical
data set with at least as many data points as there are elements in the
covariance matrix. T.

For example, consider a system of m-equations and k-variables. In order to
determine a solution for each variable we need to have m�k or m�k�0. If
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m<k then the set of equations is underdetermined, and no unique solution
exists. Meaning, we cannot solve the system of equations exactly.

The number of data points “d” that we have in our historical sample period
is d¼n*twhere n is the number of stocks in the sample and t is the number of
historical periods. In algorithmic trading, our periods are often defined to be
a day. Therefore, on each day, we have n data point (one for each stock). If
there are t days in our historical period, we will have d¼n*t data points.

Therefore, to solve for all the elements in our covariance matrix, we need
the total number of historical data points d to be equal to or greater than
the number of unique parameters k in the covariance matrix. That is:

d � k

n $ t � nðnþ 1Þ
2

t � ðnþ 1Þ
2

For a 500 stock portfolio there will be 125,250 unique parameters. Since there
are 500 data points per daywe need just over one year of data (250 trading days
per year) just to calculate all parameters in the covariance matrix.

But now the determination of each entry in the covariance matrix is further
amplified because we are not solving for a deterministic set of equations.
We are seeking to estimate the value of each parameter. A general rule of
thumb is that there needs to be at least 20 observations for each parameter
to have statistically meaningful results.

The number of data points required is then:

d� 20$k

n $ t � 20$
nðnþ 1Þ

2

t� 10$ðnþ 1Þ
Therefore, for a 500 stock portfolio (the size of the market index) we need
5,010 days of observations. This is equivalent to over 20 years of data!
Even if we require only 10 data points per parameter this still results in
over 10 years of data! Fig. 11.3B shows the number of days of data that
is required to estimate the parameters of the covariance matrix for different
number of stocks.
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It has been suggested by some industry pundits that it is possible to estimate
all unique parameters of the covariance matrix using the same number of
observations as there are unique parameters. However, these pundits also
state that in order for this methodology to be statistically correct we need
to compute the covariance terms across the entire universe of stocks and
not just for a subset of stocks. But even if this is true, the relationship across
companies in the methodology needs to be stable. The reasoning is that
if we do use the entire universe of stocks with enough data points we
will uncover the true intrarelationship across all subgroups of stocks and
have accurate variance and covariance measures.

In the US there are over 7,000 stocks and thus over 24.5 million parameters.
This would require over 14 years of data history! We are pretty confident in
the last 14 years that many companies have changed main lines of products
(e.g., Apple), changed their corporate strategy (e.g., IBM), and thus these
relationships have changed. So even if we had enough data points, we
know that companies do change violating the requirements for this
approach.

The last point to make is that for a global covariance matrix with a global
universe of over 50,000 companies (at least 50,000!) there would be over
1.25 billion unique parameters and we would need a historical prices series
of over 100 years! Think about how much has changed in just the last 10
years let alone 100 years.

FACTOR MODELS
Factor models address the two deficiencies we encountered when using
historical market data to compute covariance and correlation. First, these
models do not require the large quantity of historical observations that
are needed for the sample covariance approach in order to provide accurate
risk estimates. Second, factor models use a set of common explanatory
factors across all stocks and comparison are made to these factors across
all stocks. However, proper statistical analysis is still required to ensure
accurate results.

Factor models provide better insight into the overall covariance and
correlation structure between stocks and across the market. Positive corre-
lation means that the stocks will move in the same direction and negative
correlation means that stocks will move in opposite direction.
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A factor model has the form:

rit ¼ ai0 þ bi1$f1t þ bi2$f2t þ.þ bik$fkt þ eit

where,

rit ¼ return for stock i in period t
ai0 ¼ constant term for stock i
bik¼ exposure of stock i to factor k. This is also referred to as beta, sensi-
tivity, or factor-loadings
fkt ¼ factor k value in period t
eit ¼ noise for stock i in period t. This is the return not explained by the
model. The noise term in this model is a normal random variable with
eitwN

�

0; s2ei
�

. Here e is known as the regression error and s2ei is the
mean square error for the stock. This is also noted as stock specific or
idiosyncratic risk.

The parameters of a factor model are the model are determined via ordinary
least squares (OLS) regression analysis. Some analysts apply a weighting
scheme so that the more recent observations have a higher weight in the
regression analysis. These weighting schemes are often assigned using a
smoothing function and “half-life” parameter. Various weighting schemes
for regression analysis can be found in Green (2000).

The expected return for a stock is calculated as follows:

EðriÞ ¼ ai0 þ bi1$Eðf1tÞ þ bi2$Eðf2tÞ þ.þ bik$EðfktÞ
Then, we can calculate excess returns as follows:

rit �EðriÞ ¼ bi1$ðf1t �Eðf1tÞÞ þ bi2$ðf2t �Eðf2tÞÞ þ.þ bik$ðfkt �EðfktÞÞ þ eit

Matrix Notation
In matrix notation our single stock factor model is:

ri ¼ ai0 þ Fbi þ ei

where,

ri ¼

2
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6
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4

ri1
ri2
«
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5
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i ¼ stock i
ri ¼ vector of stock returns, rit is return for i in period t
ai ¼ constant, the constant term is the same in every period and is
expressed as a scalar
F ¼ column matrix of factor returns, fjt factor j in period t
bi ¼ vector of risk exposures, bij ¼ sensitivity of i to factor j
ei ¼ vector of errors (unexplained return), eit is error for i in period t
k ¼ total number of factors
T ¼ total number of time period

Factor Model in Matrix Notation
If we have a universe of n-stocks, we can express these returns factor model
in matrix notation as follows:

R ¼ aþ FBþ e

where,

R ¼
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This matrix representation allows us to compute the covariance across our
universe of stock without any of the issues that arise when using historical
market data providing that each stock regression is statistically correct.
Analysts interested in a detailed explanation of this process are referred
to Elton and Gruber (1995).

The covariance matrix for a universe of stock is calculated as follows:

C ¼ E

ðR� EðRÞÞ0ðR�EðRÞÞ�
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Starting with our universe factor model we have,

R ¼ aþ FBþ e

And expected returns is:

EðRÞ ¼ aþ FB

Then we compute the excess return as:

R�EðRÞ ¼ ðF�EðFÞÞBþ e

For simplicity of notation, we can define,

R� ¼ R� EðRÞ

F� ¼ F � EðFÞ
The covariance matrix is computed as:

C ¼ E½R�0R�� ¼ B0EðF�0F�ÞBþ e0e

Next since, E
�

f �k
� ¼ 0 for each factor (because we subtracted out the

mean), we have,

EðF�0FÞ ¼ covðFÞ
Which is called the factor covariance matrix. This matrix is calculated from
the historical factor data and it is important to note here that the number of
data points is usually considerably much greater than the number of factors
and we can calculate an accurate covariance matrix using market data. That
is, n[k in practice.

Next, let,

L ¼ e0e

This matrix L is the stock specific risk matrix. An underlying assumption
of financial modeling is that a correct factor model will not have any corre-
lation of error terms across stocks. That is E[eitejt]¼0 for all stocks i and j.
Therefore, L is a diagonal matrix with each diagonal term equal to the mean
square error (regression error for the stock squared) for the stock s2ei and all
off-diagonal entries are zero due to the assumption that there is no correlation
of error term across stocks. That is:

L ¼
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Finally, our covariance matrix is calculated as:

C ¼ B0covðFÞBþL

This matrix can be decomposed into the systematic and idiosyncratic
components. Systematic risk component refers to the risk and returns that
is explained by the factors. It is also commonly called market risk or factor
risk. The idiosyncratic risk component refers to the risk and returns that is
not explained by the factors. This component is also commonly called stock
specific risk, company specific, and diversifiable risk. This is shown as:

C ¼ B0covðFÞB
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Systematic Risk ðMarket RiskÞ

þ L
|{z}

Idiosyncratic Risk ðCompany SpecificÞ

TYPES OF FACTOR MODELS
Factor models can be divided into four categories of models: index models,
macroeconomic models, cross-sectional or fundamental data models, and
statistical factor models. These are described below.

Index Model
There are two forms of the index model commonly used in the industry:
single index and multi-index model. The single index model is based on
a single major market index such as the SP500. The same index is used
as the input factor across all stocks. The multi-index model commonly
incorporates the general market index, the stock’s sector index, and addi-
tionally, the stock’s industry index. The market index will be the same
for all stocks, but the sector index and industry index will be different based
on the company’s economic grouping. All stocks in the same sector will use
the same sector index, and all stocks in the same industry will use the same
industry index.

Single-Index Model
The simplest of all the multi-factor models is the single index model. This
model formulates a relationship between stock returns and market move-
ment. In most situations, the S&P500 index or some other broad market
index is used as a proxy for the whole market.

In matrix notation, the single factor model has general form:

rit ¼ ai þ bi1Rmt þ eit

rit ¼ column vector of stock returns for stock i
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Rmt ¼ column vector of market returns
bi1 ¼ stock return sensitivity to market returns
ai ¼ constant for stock i
eit ¼ column vector of random noise for stock i

In the single index model we need to estimate the risk exposure bito the
general index Rm. CAPM has a slightly different derivation where the
expected stock constant is the risk free rate for all stocks (see Sharpe, 1964).

Multi-Index Models
The multi-index factor model is an extension of the single index model that
captures additional relationships between price returns and corresponding
sectors and industries. There have been numerous studies showing that
the excess returns (error) from the single index model are correlated across
stocks in the same sector, and with further incremental correlation across
stocks in the same industry (see Elton and Gruber, 1995).

Let Rm¼ market returns, Sk¼ the stock’s sector returns, and Ik¼ the stock’s
industry return. Then the linear relationship is:

ri ¼ ai þ bimRm þ bikSk þ bilIi þ ei

where bim is the stock’s sensitivity to the general market movement, bik is the
stock’s sensitivity to its sector movement, and bil is the stock’s sensitivity to
its industry movement.

There is a large degree of correlation, however, across the general market,
sectors, and industry. These factors are not independent, and analysts need
to make appropriate adjustment following the process outlined above.

Macroeconomic Factor Models
A macroeconomic multi-factor model defines a relationship between stock
returns and a set of macroeconomic variables such as GDP, inflation, indus-
trial production, bond yields, etc. The appeal of using macroeconomic data
as the explanatory factors in the returns model is that these variables are
readily measurable and have real economic meaning.

While macroeconomic models offer key insight into the general state of the
economy they may not sufficiently capture the most accurate correlation
structure of price movement across stocks. Additionally, macroeconomic
models may not do a good job capturing the covariance of price movement
across stocks in “new economies” or a “shifting regime” such as the sudden
arrival of the financial crisis beginning in Sept 2008.
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Ross, Roll, and Chen (1986) identified the following four macroeconomic
factors as having significant explanatory power with stock return. These
strong relationships still hold today and are:

1. unanticipated changes in inflation;
2. unanticipated changes in industrial production;
3. unanticipated changes in the yield between high-grade and low-grade

corporate bonds;
4. unanticipated changes in the yield between long-term government bonds

and t-bills. This is the slope of the term structure.

Other macroeconomic factors have also been incorporated into these models
include change in interest rates, growth rates, GDP, capital investment, un-
employment, oil prices, housing starts, exchange rates, etc. The parameters
are determined via regression analysis using monthly data over a five-year
period, e.g., 60 observations.

It is often assumed that the macroeconomic factors used in the model are
uncorrelated and analysts do not make any adjustment for correlation across
returns. But improvements can be made to the model following the adjust-
ment process described above.

A k-factor macroeconomic model has the form:

ri ¼ ai þ bi1f1 þ bi2f2 þ.þ bikfk þ ei

Analysts need to estimate the risk exposures bik’s to these macroeconomic
factors.

Cross Sectional Multi-Factor Model
Cross-sectional models estimate stock returns from a set of variables that are
specific to each company rather than through factors that are common
across all stocks. Cross-sectional models use stock specific factors that
are based on fundamental and technical data. The fundamental data consists
of company characteristics and balance sheet information. The technical
data (also called market driven) consists of trading activity metrics such
as average daily trading volume, price momentum, size, etc.

Because of the reliance on fundamental data, many authors use the term
“fundamental model” instead of cross-sectional model. The rationale behind
the cross-sectional models is similar to the rationale behind the macro-
economic model. Since managers and decision-makers incorporate
fundamental and technical analysis into their stock selection process it is
only reasonable that these factors provide insight into return and risk those
stocks. Otherwise why would they be used.
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Fama and French (1992) found that three factors consisting of (1) market
returns, (2) company size (market capitalization), and (3) book-to-market
ratio have considerable explanatory power. While the exact measure of
these variables remains a topic of much discussion in academia, notice
that the last two factors in the FamaeFrench model are company specific
fundament data.

While many may find it intuitive to incorporate cross-sectional data
into multifactor models these models have some limitations. First, data
requirements are cumbersome requiring analysts to develop models using
company specific data (each company has its own set of factors). Second,
it is often difficult to find a consistent set of robust factors across stocks
that provide strong explanatory power. Ross and Roll had difficulty
determining a set of factors that provided more explanatory power than
the macroeconomic models without introducing excessive multicol-
linearity into the data.

The cross-sectional model is derived from company specific variable and
are referred to as company factor-loadings. The parameters are typically
determined via regression analysis using monthly data over a longer period
of time, e.g., a five-year period, with 60 monthly observations.

The cross-sectional model is written as:

ri ¼ ai þ x�i1bf 1 þ x�i2bf 2 þ.þ x�ikbf k þ ei

Where x�ik is the normalized factor loading of company i to factor k. For
example,

x�ik ¼
xik � EðxkÞ

sðxkÞ
Where E(xk) is the mean xk across all stocks and s(xk) is the standard
deviation across all stocks xk.

And unlike the previous models where the factors were known in advance
and we had to estimate the risk sensitivities, here we know the factor-
loadings (from company data) and we need to estimate the factors.

Statistical Factor Models
Statistical factor models are also referred to as implicit factor models
and principal component analysis (PCA). In these models neither the
explanatory factors nor sensitivities to these factors are unknown in advance
and they are not readily observed in the market. However, both the statis-
tical factors and sensitivities can be derived from historical data.
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There are three common techniques used in statistical factor models:
eigenvalue-eigenvector decomposition, singular value decomposition, and
factor analysis. Eigenvalue-eigenvector is based on a factoring scheme of
the sample covariance matrix and singular value decomposition is based
on a factoring scheme of the returns matrix of returns (see Pearson, 2002).
Factor analysis (not to be confused with factor models) is based on a
maximum likelihood estimate of the correlations across stocks. In this section
we discuss the eigenvalue-eigenvector decomposition technique.

The statistical factor models differ from the previously mentioned models in
that analysts estimate both the factors (Fk’s) and the sensitivities to the
factors (bik’s) from a series of historical returns. This model does not
make any prior assumptions regarding the appropriate set of explanatory
factors or force any preconceived relationship into the model.

This approach is in contrast to the explicit modeling approaches where
analysts must specify either set of explanatory factors or a set of company
specific factor-loadings. In the explicit approaches analysts begin with
either a set of specified factors and estimate sensitivities to those factors
(i.e., index models and macroeconomic factor model) or begin with
the factor-loadings (fundamental data) and estimate the set of explanatory
factors (cross-sectional model).

The advantage of statistical factor models over the previously described
explicit approaches is that it provides risk managers with a process to
uncover accurate covariance and correlation relationships of returns without
making any assumptions regarding what is driving the returns. Any
preconceived bias is removed from the model. The disadvantage of these
statistical approaches is that it does not provide portfolio managers with a
set of factors to easily determine what is driving returns since the statistical
factors do not have any real world meaning.

To the extent that analysts are only interested in uncovering covariance and
correlation relationships for risk management purposes PCA has proven to
be a viable alternative to the traditional explicit modeling approaches.
Additionally, with the recent growth of exchange traded funds (ETFs)
many managers have begun correlating their statistical factors to these
ETFs in much the same way Ross and Roll did with economic data to better
understand these statistical factors.

The process to derive the statistical model is as follows:

Step 1: Compute the sample covariance matrix by definition from
historical data. This matrix will likely suffer from spurious relationships
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due the data limitations (not enough degrees of freedom and potential
false relationships). But these will be resolved via PCA.

Let C represent the sample covariance matrix.

Step 2: Factor the sample covariance matrix. We based the factorization
scheme based on eigenvalue-eigenvector decomposition. This is:

C ¼ VDV 0

Where D is the diagonal matrix of eigenvalues sorted from largest to
smallest, l1>l2>.>ln and V is the corresponding matrix of eigenvectors
as follows:

D ¼

2

6

6

6

4

l1 0 / 0

0 l2 / 0

« « 1 «

0 0 / ln

3

7

7

7

5

;V ¼

2

6

6

6

4

v11 v21 / vn1
v12 v22 / vn1
« « 1 «

v1n vn2 / vnn

3

7

7

7

5

Since D is a diagonal matrix we have D¼D1/2D1/2, D¼D0, and
D1=2 ¼ �

D1=2
�0

Then, our covariance matrix C can be written as:

C ¼ VDV 0 ¼ VD1=2D1=2V 0 ¼ VD1=2
�

VD1=2
�0

Step 3: Compute b in terms of the eigenvalues and eigenvectors

b ¼ �

VD1=2
�0

Then the full sample covariance matrix expressed in terms of b is:

b0b ¼ VD1=2
�

VD1=2
�0

Step 4: Remove Spurious Relationship due to data limitation

To remove the potential spurious relationships, we only use the eigenvalues
and eigenvectors with the strongest predictive power.

How Many Factors Should be Selected?
In our eigenvalue-eigenvector decomposition each eigenvalue lk of the sam-
ple covariance matrix explains exactly lk=

P

li percent of the total variance.
Since the eigenvalues are sorted from highest to lowest, a plot of the percent-
age of variance explained will show how quickly the predictive power of the
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factors declines. If the covariance matrix is generated by say 10 factors, then
the first 10 eigenvalues should explain a very large quantity of total variance.

There are many ways to determine how many factors should be selected to
model returns. For example, some analysts will select the minimum number
of factors that explain a prespecified amount of variance, some will select
the number of factors up to where there is a break-point or fall-off in explan-
atory power. And others may select factors so that the Variance > 1/n.
(E.g., each factor should explain at least 1/n of the total variance). Readers
can refer to Dowd (1998) for further techniques.

If it is determined that there are k-factors that sufficiently explain returns for
m-stocks, then the risk exposures are determined from the first k risk
exposures for each stock. This risk exposure matrix is:

b ¼

2

6

6

6

4

b11 b21 / bm1

b12 b22 / bm2

« « 1 «

b1k b2k / bmk

3

7

7

7

5

The estimated covariance matrix is then:

C
m x m

¼ b0
m x k

b
k x m

þ L
m x m

In this case the idiosyncratic matrix L is the diagonal matrix consisting of
the difference between the sample covariance matrix and b0b. That is,

L ¼ diag
�

diag
�

C� b0b
��

It is important to note that in the above expression C � b0b, the off-
diagonal terms will often be nonzero. This difference is the spurious relation-
ship caused by the data limitation and degrees of freedom issue stated above.
Selecting an appropriate number of factors determined via eigenvalue
decomposition and historical period will help eliminate these false
relationships.

Fig. 11.4 illustrates the usage of eigenvalue decomposition to determine the
number of statistical factors to use to construct a covariance matrix for the
SP500 index. This figure includes two lines. The first line shows the variance
explained by each eigenvalue in decreasing order of explanatory power.
The first eigenvalue explains approximately 47% of variance, the second
eigenvalue explains 13%, and so on. The second line shows the cumulative
percentage of total variance explained by all eigenvalues. This analysis
shows that the nine (9) most predictive eigenvalues explains 80% of total
variance for all 500 stocks. Twenty (20) eigenvalues explains 87% of total
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variance. And twenty-five (25) eigenvalues explains 88% of total variances.
There is relatively little improvement in predictive power by increasing from
20 eigenvalues to 25 eigenvalues. This covariance matrix can be generated
from k ¼ 10 to k ¼ 20 factors.

Inexperienced analysts may conclude that the appropriate number of factors
in this case is k ¼ 10 or less based on eigenvalue-eigenvector decomposi-
tion. However, it is important to determine if there are any subgroups where
certain factors have strong predictive power, such as sectors or industries.
That is, an eigenvalue explains a large quantity of incremental variance
within a sector group but does not explain much variance outside of the
sector group. This may also hold true when expanding from large cap stock
only to a universe that includes large and small (and micro) cap stocks. Then,
there may be certain eigenvalues that explain a large percentage of variance
for certain market cap categories only, such as is the case if there exists a size
effect. In these cases, dividing the data into subgroups to evaluate the
effect of eigenvalue predictive power is appropriate and will provide an
improvement in model predictive power.
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Chapter12
Volume Forecasting Techniques

INTRODUCTION
This chapter provides readers with volume techniques for algorithmic
trading. This includes methods to forecast monthly average daily volumes
(ADVs) and daily volumes. We also provide insight into weekly and
intraday volume patterns. The monthly ADV model incorporates previous
volume levels, momentum, and market volatility. The daily volume fore-
casting model is based on an autoregressive moving average (ARMA)
time series using a historical median measure combined with a day of
week effect adjustment factor.

MARKET IMPACT MODEL
We start with the instantaneous impact formulation:

Ibp ¼ a1$Size
a4$sa3

Then, we calculate market impact in terms of percentage of volume (POV),
trade rate (a), and trade schedule (xk) as follows:

MIbpðPOVÞ ¼ b1$I
�$POVa4 þ ð1� b1Þ$I�

MIbpðaÞ ¼ bb1$I�$aa4 þ
�

1�bb1
�

$I�

MIbpðxkÞ ¼
X
n

k¼ 1

 

b1 $
I�

X
$

�

xk
xk þ vk

�1þa4
!

þ ð1� b1Þ$I�

where

Size ¼ order size expressed in terms of ADV as a decimal:

Size ¼ X

ADV
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ADV ¼ average daily volume
X ¼ total order shares
s ¼ annualized volatility (expressed as a decimal, e.g., 0.20)
POV ¼ percentage of volume

POV ¼ X

X þ Vt
; 0 � POV � 1

a ¼ trading rate

a ¼ X

Vt
; a � 0

xk ¼ shares to trade in period k

X
n

k¼ 1

xk ¼ X; xk � 0

Vt ¼ expected market over the trading interval excluding the order
shares X
vk ¼ expected market volume in period k excluding the order shares xk
a1, a2, a3, a4, b1 ¼ model parameters estimated via nonlinear estimation
techniques

In the above formulations, the trading strategy can be expressed in three
different ways: percentage of volume (POV), trading rate (a), and trade
schedule (xk). These different strategies are discussed in further in the
chapter titled Advanced Algorithmic Modeling Techniques.

The market impact model can now be expressed in terms of volume as
follows:

Ibp ¼ a1$

�

X

ADV

�a2

$sa3

MIbpðPOVÞ ¼ b1$I
�$

�

X

X þ Vt

�a4

þ ð1� b1Þ$I�

MIbpðaÞ ¼ bb1$I�$
�

X

Vt

�a4

þ
�

1�bb1
�

$I�

MIbpðxkÞ ¼
X
n

k¼ 1

 

b1 $
I�

X
$

�

xk
xk þ vk

�1þa4
!

þ ð1� b1Þ$I�
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Techniques to estimate average daily monthly volume (ADV) and daily vol-
ume (Vt) with a day of week effect are provided below.

AVERAGE DAILY VOLUME
In this section we describe a process to forecast average monthly volume
levels. This process could also be extended to estimate annual volume
levels. Having a forward-looking ADV estimate can be very helpful for
the portfolio manager who is looking to rebalance his/her portfolio at
some future point in time when volumes may look much different than
they do now.

Methodology
Period: 19 years of data: Jan-2000 through Dec-2018.

Universe: ADVs for large cap (SP500) and small cap (R2000) stocks by
month.

Definitions
V(t) ¼ ADV across all stocks per day in corresponding market cap
category
s(t) ¼ average stock volatility in the month
SPX ¼ SP500 index value on last day in month
DV(t) ¼ log change in ADV (month over month [MOM]). For example,
in January, this represents the log change in ADV from December to
January:

DVðtÞ ¼ lnfVðtÞg � lnfVðt� 1Þg
DV(t�1) ¼ previous month’s log change in daily volume (MOM)
to incorporate an autoregressive term. For example, in January, this
represents the log change in ADV from November to December. This
is also a proxy for momentum:

DVðt� 1Þ ¼ lnfVðt� 1Þg � lnfVðt� 2Þg
DV(t �12) ¼ log change in daily volume (MOM) 1 year ago to incorpo-
rate a monthly pattern. For example, in January, this represents the log
change in ADV from December to January in the previous year. This
is a proxy for a seasonal effect:

DVðt� 12Þ ¼ lnfVðt� 12Þg � lnfVðt� 13Þg
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Dslarge(t) ¼ log change in large cap volatility (MOM). For example, in
January this represents the log change in volatility from December to
January:

DslargeðtÞ ¼ lnfslargeðtÞg � lnfslargeðt� 1Þg

Dssmall(t) ¼ log change in small cap volatility (MOM). For example, in
January this represents the log change in volatility from December to
January:

DssmallðtÞ ¼ lnfssmallðtÞg � lnfssmallðt� 1Þg
DSpx(t) ¼ log change in SP500 index value (MOM). For example, in
January this represents the log change in SP500 index from December
to January. This is a proxy for price momentum. We used the change
in SP500 index values for both large cap and small cap forecasts:

DSpxðtÞ ¼ lnfspxðtÞg � lnfspxðt� 1Þg

Monthly Volume Forecasting Model

DVðtÞ ¼ b0 þ b1$DVðt� 1Þ þ b2$DVðt� 12Þ þ b3$Dsþ b4$DSpx

Fig. 12.1 shows the ADV per stock in each month for large cap and small cap
stocks over the period Jan-2000 through Dec-2018 (18 years of monthly
data). For example, in December 2018 the ADV for a large cap stock was
5,947,593 per day and the ADV for a small cap stock was 983,149 per
day. It is important to note that historical volume levels will change based
on stock splits and corporate actions.

Beginning in 2014, large cap stock ADV was just slightly above 4 million
shares per day. There has been a recent spike in large cap volume in 4Q-
2018. Over the same period, small cap ADV has increased dramatically
from about 500,000 shares per day to about 850,000 shares per day. This
represents approximately a 70% increase in ADV for small cap stocks.

Analysis
The monthly volume forecasting analysis is to determine an appropriate
relationship to predict the expected change in monthly volume levels. Since
the number of trading days will differ in each month due to weekdays,
holidays, etc., it is important that we adjust the number of trading days to
make a fair comparison across time. Our analysis included 1- and
12-month autoregressive terms, the change in monthly volatility levels for
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each market cap category, and the MOM change in SP500 index for both
large and small cap stocks.

We estimated our regression coefficients for large and small cap stocks for
three different periods to help uncover trends and to evaluate the stability of
these relationships. These periods are:

19 years: 2000e18.

10 years: 2014e18.

5 years: 2016e18.
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Regression Results
The result of our regression study is shown in Table 12.1. In total, there are
six scenarios that were analyseddthree for large cap and three for small cap.
The results show the estimated betas, corresponding standard errors and
t-stat, and the R2 statistic. Overall our regression model had a very strong
fit. The model did explain a larger percentage of the variation for
large cap stocks than for small cap stocks (as is expected due to the trading
stability of the smaller companies).

OBSERVATIONS OVER THE 19-YEAR PERIOD:
2000e18
n Monthly volumes exhibit trend reversion. The sign of the DV(t�1)

variable was negative across both large and small cap stocks in each
of the three scenarios. If volume levels were up in 1 month they were
more likely to be down in the following month. If volume levels were
down in 1 month they were more likely to be up in the following month.
This relationship is more significant for large cap than for small cap
stocks.

n Monthly volumes exhibit a positive seasonal trend. The sign of the
DV(t�12) variable was positive. This indicates a seasonal pattern exists,
although monthly volume levels vary. For example, December and
August are consistently the lowest volume months during the year.
October and January are the two highest volume months of the year
(measured over our 19-year period). The relationship is stronger
for small cap than for large cap stocks. This variable was found to be
statistically significant in the 19-year scenario, but was not found to be
statistically significant in more recent years.

n Volumes are positively correlated with volatility. One way of thinking
about this is that volume causes volatility. Another explanation is that
portfolio managers have a better opportunity to differentiate themselves
and earn a higher return in times of increasing volatility. Hence, they
trade and rebalance their portfolios more often. The relationship here
is slightly stronger for large cap stocks.

n The relationship between volume and price level (SPX index) is the only
factor that produces different relationships for large and small cap stocks
in the 19-year scenario.
o Large cap stock volume is inversely related to prices. The relation-

ship could be due to the current investor sentiment (since the
financial crises). Investors are very weary of the market and fear
further sharp declines. A cash investment of a fixed dollar amount
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Table 12.1 Monthly Volume ForecastsdAverage Daily Volume Per Stock.

Large Cap Stocks (SP500) Small Cap Stocks (SP500)

Constant DV(e1) DV(e12) Ds DSPX Constant DV(e1) DV(e12) Ds DSPX

19 Years: 2000e18 19 Years: 2000e18

Beta 0.003 �0.324 0.210 0.359 �0.793 Beta 0.003 �0.208 0.199 0.309 0.350
SE 0.007 0.050 0.050 0.039 0.211 SE 0.007 0.060 0.061 0.044 0.194
t-Stat 0.478 �6.515 4.204 9.134 �3.755 t-Stat 0.475 �3.482 3.274 6.961 1.807
R2 0.51 R2 0.27

Recent 5 Years: 2014e18 Recent 5 Years: 2014e18

Beta 0.017 �0.487 0.200 0.399 �2.208 Beta 0.011 �0.252 0.188 0.396 �0.615
SE 0.015 0.130 0.113 0.127 0.674 SE 0.015 0.119 0.140 0.131 0.602
t-Stat 1.115 �3.755 1.766 3.136 �3.273 t-Stat 0.733 �2.114 1.339 3.021 �1.023
R2 0.44 R2 0.30

Recent 3 Years: 2016e18 Recent 3 Years: 2016e18

Beta 0.021 �0.440 0.157 0.322 �2.372 Beta 0.013 �0.269 0.089 0.505 �0.575
SE 0.020 0.185 0.160 0.162 0.867 SE 0.020 0.150 0.208 0.165 0.765
t-Stat 1.047 �2.381 0.986 1.991 �2.734 t-Stat 0.669 �1.791 0.426 3.066 �0.751
R2 0.41 R2 0.41

Forecasting model: Monthly(t) ¼ b0 þ b1*Monthly(t e 1) þ b2*Month(e12) þ b3*Volt_Chg þ b4*Chg_SPX.

Observations
Over

the
19-Year

Period:2000e
18
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will purchase fewer shares in a rising market but more shares in a fall-
ing market. Redemption of a fixed dollar amount will require fewer
shares to be traded in a rising market and more shares to be traded
in a declining market. We expect that this trend will stay constant
and may additionally become negative for small cap volumes until
investor sentiment and overall market confidence increase.

o Small cap stock volume is positively related to prices. As the market
price increases, small cap volume increases and vice versa. This is
likely due to high investor sentiment during times of increasing
market levels. Investors will put more in small cap stocks in a rising
market hoping to earn higher returns, but will trade small stocks less
often in a decreasing market. This relationship, however, was not
found to be statistically significant in more recent years. There no
longer appears to be any relationship between price level and small
cap volumes.

The monthly volume forecasting models for large and small cap stocks
using all 19years of data are:

Large Cap : DVðtÞ ¼ 0:003� 0:324$DVðt� 1Þ þ 0:210$DVðt� 12Þ
þ 0:359$DslargeðtÞ � 0:793$DSpx

Small Cap : DVðtÞ ¼ 0:003� 0:208$DVðt� 1Þ þ 0:199$DVðt� 12Þ
þ 0:309$DssmallðtÞ þ 0:350$DSpx

OBSERVATIONS OVER THE MOST RECENT 3-YEAR
PERIOD: 2016e18
n Large cap stocks. Large cap stock volume was found to be statistically

related to three factors: (1) previous month volume change, (2) change
in volatility, and (3) price level. Large cap stocks were found to have
a negative relationship with previous volume change. That is, if the
volumes were up in the previous month, they were likely to decrease
in the current month. If the volumes were down in the previous month,
they were likely to be up in the current month. Volumes continue to be
related to volatility (although almost insignificantly). Thus, change in
volatility level is still somewhat an indication for the potential to earn
a short-term profit. Volumes are negatively related to price level. This
negative relationship is likely due to funds having a fixed dollar quantity
that they will invest in the market. Thus, as prices decrease, portfolio
managers will purchase more shares, and as prices increase, portfolio
managers will purchase fewer shares.
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n Small cap stocks. Small cap stock volume was found to be statistically
related to three factors: (1) previous month volume change, (2) change
in volatility, and (3) price level. Small cap stocks were found to have
a negative relationship with previous volume change. That is, if the
volumes were up in the previous month, they were likely to decrease
in the current month. If the volumes were down in the previous month,
they were likely to be up in the current month. Volumes continue to be
related to volatility (although almost insignificantly). Thus, change in
volatility level is still somewhat an indication for the potential to earn
a short-term profit. Volumes are negatively related to price level. This
negative relationship is likely due to funds having a fixed dollar quantity
that they will invest in the market. Thus, as prices decrease, portfolio
managers will purchase more shares and as prices increase, portfolio
managers will purchase fewer shares.

Our preferred monthly volume forecasting model for large and small
cap stocks based on the previous 3 years of data is shown below. We do
recommend performing an updated analysis of market volumes to test for
the statistical significance of each of the factors. Our results for all the
factors are shown below (not all these factors were found to be statistically
significant):

Large Cap : DVðtÞ ¼ 0:021� 0:440$DVðt� 1Þ þ 0:157$DVðt� 12Þ
þ 0:322$DslargeðtÞ � 2:372$DSpx

Small Cap : DVðtÞ ¼ 0:013� 0:269$DVðt� 1Þ þ 0:089$DVðt� 12Þ
þ 0:505$DssmallðtÞ � 0:575$DSpx

Volumes and Stock Price Correlation
n Our analysis did not uncover any relationships between volume levels

and stock correlation over any of the periods analyzed. However,
correlation remains a favorite indicator for portfolio managers.

n We suggest readers experiment with alternative correlation measures
such as log change and actual level. This may improve the accuracy of
our volume forecast model.

FORECASTING DAILY VOLUMES
This section presents a daily stock volume forecasting model that can be
used in algorithmic trading. Our daily volume forecasting approach is based
on an ARMA technique. Our research finds daily volumes to be dependent
upon: (1) either a moving average (ADV) or a moving median daily volume
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(MDV), (2) a historical look-back period of 10 days, (3) a day of week
effect, or (4) a lagged daily volume term. Additional adjustments can also
be made to the volume forecasts on special event days such as earnings,
index reconstitution, triple and quadruple witching day, Fed day, etc
(see Chapter 2).

Our Daily Volume Forecasting Analysis is as Follows
Definitions
Historical look-back period. The number of days (data points) to use in the
forecasts. For example, should the measure be based on 66, 30, 20, 10, or
5 days of data?

ADV. ADV computed over a historical period. We will use a rolling average
in our forecast.

MDV.MDV computed over a historical period. We will use a rolling median
in our forecast.

Day of week. A measure of the weekly cyclical patterns of trading volumes.
Stocks tend to trade different percentages per days. This cyclical effect has
varied over time and differs across market cap categories.

Lagged daily volume term. We found some evidence of persistence in
market volume. Often, both high and low volume can persist for days.
However, persistence is more often associated with high volume days due
to the effect of trading large orders over multiple days to minimize price
impact. Thus when an institution is transacting a multiday order, there is
likely to be excess volume.

Authors’ note: It is important to differentiate between the ADV measure used
to normalize order size in the market impact estimate and the ADV or MDV
measure used to predict daily volume. The ADV used in the former model
needs to be consistent with the definition used by traders to quantify size.
For example, if traders are using a 30-day ADV measure as a reference point
for size, the market impact model should use the same metric. It is essential
that the ADV measure that is used to quote order size by the trader is the
exact measure that is used to calibrate the market impact parameters in the
estimation stage. The daily volume forecast, however, is used to determine
costs for the underlying trading strategydwhether it is a trade schedule, a
POV-based strategy, or a trading rate-based strategy. An order for 100,000
shares or 10% ADV will have different expected costs if the volume on
the day is 1,000,000 shares or 2,000,000 shares. In this case, a more accurate
daily volume estimate will increase precision in cost estimate and lead to
improved trading performance.
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Daily Forecasting AnalysisdMethodology
Time: 2017 through 2018.

Sample universe: S&P 500 (large cap) and R2000 (small cap) indexes on
December 31, 2018. We only included stocks where we had complete
trading history over the period January 1, 2017 through December 31, 2018.

Variable Notation
V(t) ¼ actual volume on day t
bVðtÞ ¼ forecasted volume for day t
MDV(n) ¼MDV computed using previous n-trading days
ADV(n) ¼ ADV computed using previous n-trading days
Day Of Week(t) ¼ percentage of weekly volume that typically trades on
the given weekday
bb ¼ autoregressive sensitivity parameterdestimated via ordinary least
squares regression analysis
e(t) ¼ forecast error on day t

ARMA Daily Forecasting Model

bVðtÞ ¼ VtðnÞ $DayOfWeekðtÞþ bb$eðt� 1Þ
where VtðnÞ is either the n-day moving ADV or n-day moving MDV, and
e(t�1) is the previous day’s volume forecast error (actual minus estimate).
That is:

eðt� 1Þ ¼ Vðt� 1Þ � �Vt�1ðnÞ $DayOfWeekðt� 1Þ�

The error term above is calculated as the difference between actual volume
on the day and estimated volume only using the day of week adjustment
factor. The theoretical ARMA model will cause persistence of the error
term because it includes the previous day’s error in the forecast,
e.g., e(t � 2). Our analysis has found that we could achieve more accurate
estimates defining the error term only as shown above. Additionally,
computation of daily volume estimates is also made easier since we do not
need to maintain a series of forecast errors.

Analysis Goal
The goal of our daily volume forecasting analysis is to determine:

n Which is better: ADV or MDV?
n What is the appropriate number of historical days?
n Day of week adjustment factor
n Autoregressive volume term
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The preferred form of the ARMA model is determined via a three-step
process; the forecasting model should be reexamined at least monthly and
recalibrated when necessary.

Step 1. Determine Which is More Appropriate: ADV
or MDV and the Historical Look-Back Number of
Days
n Compute the ADV and MDV simple forecast measure for various

look-back periods, e.g., let the historical look-back period range from
t ¼ 1 to 30.

n Compute the percentage error between the actual volume on the day and
simple forecast measure. That is:

εðtÞ ¼ ln
�

VðtÞ =VðnÞ�

o The percentage error is used to allow us to compare error terms
across stocks with different liquidities.

o Calculate the standard deviation of the error term for each stock over
the sample period.

o Calculate the average standard deviation across all stocks in the
sample.

o Repeat the analysis for look-back periods from 1 to 30 days.
o Plot the average standard deviation across stocks for each day (from

1 to 30).

A plot of our forecast error analysis for each measure is shown in
Fig. 12.2A for large cap stocks and in Fig. 12.2B for small cap stocks.
Notice that for both large and small cap stocks the MDV measure has a
lower error than the ADV. This is primarily due to the positive skews of
daily volume, which cause the corresponding ADV measure to be higher.
Next, notice that the error term for both market cap categories follows a
convex shape with a minimum error point. For large cap stocks the mini-
mum error is around 5e10 days and for small cap stocks the minimum error
is close to 10 days.

Conclusion #1
n We conclude that the MDV using a historical period of 10 days, e.g.,

MDV(10), has the lowest forecast error across stocks and market cap
during our analysis period.

312 CHAPTER 12 Volume Forecasting Techniques



Authors note: As shown above, the ADV measure will more often be higher
than the actual volume due to the positive skew of the volume distribution.
Volume distributions tend to be more above average than below average
outliers. This will result in actual costs being higher than the predicted
cost. For example, if we trade 200,000 shares out of a total ADV of
1,000,000 shares, we may be tempted to state that a full-day strategy corre-
sponds to a trading rate of 20%. However, if the actual volume on the day is
only 800,000 shares, the actual trading rate will be 25%, resulting in higher
than predicted costs. The market impact forecasting error will be biased (to
the high side) when using the ADV measure to predict daily volume. In our
sample, we found the ADV to be higher than the actual volume on the day
65% of the time.
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n FIGURE 12.2 Volume Forecasting Methodology 2017e2018. (A)
Large Cap Stocks Volume Forecasting Methodology, (B) Small
Cap Stocks Volume Forecasting Methodology.
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Step 2. Estimate the DayOfWeek(t) Parameter
We analyzed if there was a cyclical trading pattern during the week. To
avoid bias that may be caused by special event days such as Federal
Open Market Committee (FOMC), triple witching, index reconstitution,
earnings, month end, etc., we adjusted for these days in our analysis. It is
important to note that if month end is not excluded from the data there
may be a strong bias suggesting that Friday is the heaviest trading day of
the week, since 3 out of 7month ends occur on Fridays (due to weekends).
Many investors trade more often on the last day of the month.

Our day of week process is as follows:

n For each stock, compute the percentage of actual volume traded on the
day compared to the average volume in the week.

n Exclude the special event days that are historically associated with
higher traded volume.

n Compute the average percentage traded on each day across all stocks in
the sample.

n It is important to use a large enough sample in the analysis. We used one
full-year trading period to compute the day of week effect.

The result of our day of week analysis is shown in Fig. 12.3. For large cap
stocks, Monday is consistently the lowest volume day in the week. Volume
then increases throughout the week increasing on each day. Friday is the
highest volume trading day during the week. Please note that Friday is the
highest trading volume day during the week after adjusting for month end
and special event days. This is a much different trend than realized only 5
years previous where large cap volume declined on Fridays.

For small cap stocks, volume was relatively steady for Monday through
Friday but with a spike in volume on Friday. Like large cap stocks, this
trend is much different than only 5 years ago where small cap volume
declined on Fridays.

This new Friday effect may be due to investors not willing to hold an open
position in small cap stocks over the weekend for fear there is too much
market exposure for small cap stocks and may elect to pay higher market
impact before the weekend to ensure completion.

Conclusion #2
n Stock trading patterns exhibit a cyclical weekly pattern.
n The cyclicality pattern is different for large cap and small cap stocks.
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Step 3. Estimate the Autoregressive Parameter bb
The autoregressive parameter is used to correct for persistence of volume over
consecutive days. We found above average volume days were more likely to
be followed by above average volume days and below average volume days
were more likely to be followed by below average volume days. But the rela-
tionship was much more significant for above average volume days than for
the below average volume days. This process is as follows:

n Estimate volume for the day based on the 10-day median plus the day of
week adjustment.

n Compute the forecast error term as the difference between the actual
volume on the day and the estimated volume. This difference is:

εðtÞ ¼ VðtÞ �MedianðtÞ$DayOfWeekðtÞ
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n FIGURE 12.3 Day of Week Effect. (A) Large Cap Stocks Day of
Week Effect, (B) Small Cap Stocks Day of Week Effect.
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n Run a regression of the error term on its 1-day lagged term, that is:

εðtÞ ¼ aþ b$εðt� 1Þ

o Compute the slope term b for large and small cap stock.

Large cap stocks had a much larger degree of autocorrelation than small cap
stocks. The average correlation of errors was blarge ¼ 0.409 for large
cap stocks and bsmall ¼ 0.237 for small cap stocks. After correcting for auto-
correlation there was still a very slight amount of autocorrelation present,
negligible to the effect on our forecasts, due to the constant term in our
regression model.

Forecast Improvements
We next compared the results from our preferred ARMA model (shown
above) to a simple 30-day ADV measure (e.g., ADV30) to determine the
extent of the forecasting improvement. The preferred ARMA model
reduced forecast error 23.2% for large cap stocks and reduced forecast error
23.9% for small cap stocks (Table 12.2).

Daily Volume Forecasting Model
Our daily volume forecasting models for large and small cap stocks can
finally be formulated as:

Large Cap bVðtÞ ¼ MDVð10Þ$DayOfWeekðtÞ þ 0:409$eðt� 1Þ

Small Cap bVðtÞ ¼ MDVð10Þ$DayOfWeekðtÞ þ 0:237$eðt� 1Þ

Conclusion #3
n Statistical evidence shows mean reversion trend in monthly volumes.
n Forecasts can be improved through incorporation of an autoregressive

term.

Table 12.2 One-Period LagdError Correlation.

Category Beta

Correlation
Before
Adjustment

Correlation
After
Adjustment

Net Change
Improvement

LC 0.409 0.412 �0.012 �0.400
SC 0.237 0.241 �0.006 �0.235
All 0.297 0.298 �0.008 �0.290
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Author’s note:

n In theory, the beta term in an ARMA model is often shown to be fore-
casted without the constant term alpha, but since we are using a moving
median it is not guaranteed that the mean error will be zero and thus a
constant term is needed.

n The ARMA forecast with the “beta” autoregressive terms can be
computed both with and without special event days. Since it is important
that this technique be continuous, unlike the day of week adjustment, we
need to include all days. As an adjustment, we can (1) treat the special
event day and day after the special event as any other day and include
an adjustment for the previous day’s forecasted error, (2) define the
forecast error to be zero on a special event day (this way it will not
be included in the next day’s forecast), or (3) use a dummy variable
for special event days.

n Our analysis calculated an autoregressive term across all stocks in each
market cap category. Users may also prefer to use a stock-specific
autoregressive term instead. We did not find statistical evidence that a
stock-specific beta is more accurate for large cap stocks but there was
some evidence supporting the need for a stock-specific beta for the small
cap stocks. Readers are encouraged to experiment with stock-specific
forecasts to determine what works best for their specific needs
(Table 12.3).

Forecasting Intraday Volumes Profiles
In this section we provide insight into determining proper intraday volume
profiles and how this information can be used to improve the daily volume
forecast during the trading day.

Intraday trading pattern is an essential part of algorithmic trading.
Algorithms utilize this information to determine how many shares to trade
during different times of the day and it also helps algorithms determine if

Table 12.3 ARMA Improvement Over ADV30 Forecasting
Methodology.

Market
Cap ADV30 ARMA

Net Change
Improvement

Percent
Improvement

LC 43.0% 33.0% �9.9% �23.2%
SC 53.6% 41.0% �12.6% �23.5%
All 49.0% 37.3% �11.7% �23.9%

Forecasting model: Y(t) ¼ Median(10)*DOW þ AR*Y(t e 1).
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they need to trade faster or slower, and the cost ramifications of doing so.
Knowledge of intraday trading patterns also helps investors hedge timing
risk and structure optimized trading strategies to balance the tradeoff
between market impact and timing risk.

Stock intraday volumes have traditionally followed a U-shaped pattern
where more volume is traded at the open and close during midday.
However, more recently, and over the previous 5 years there has been a shift
to the intraday volume profiles and these curves now more resemble a
J-shaped pattern and a U-shaped pattern. Now, while there is still more
volume traded at the open than midday, there is much more volume traded
at the close than the open.

This shift in more trading volume at the close is due to less market trans-
parency at the open and a lack of proper price discovery mechanism in place
to help investors determine the appropriate fair value price for stocks.
As discussed in previous chapters, specialists and market-makers provided
investors with a very valuable price discovery process where there was con-
fidence in the opening stock prices on the day. But now, in an environment
without specialists and market-makers, investors must rely on trading
algorithms executing 100 share lots to determine the fair value stock price.
While algorithms do get the price discovery process right and do determine
the fair value stock price, it could take from 15 to 45 min to determine a
stable fair value price. Because this morning period has more volatility
and less price certainty, some investors have elected not to trade at the
open and they start trading their orders at 10 a.m. or after. Thus they will
need to execute more shares at the close to complete their orders. Historical-
ly, specialists and market-makers were able to determine a fair value opening
price because they were provided with the complete order size for numerous
investors and they maintained an order book with buy and sell shares and
corresponding prices. Thus by gauging the buyesell imbalance at the
opening, they could specify an accurate opening price. Nowadays, algo-
rithms do not have access to orders from any other investors, and thus are
at a disadvantage when it comes to specifying a fair value opening price.

Small cap stock volume spikes more at the close than large cap stocks. This
higher end of day spike for small cap stocks is primarily caused because
small cap stocks exhibit more uncertainty in period volumes and if investors
miss a trading opportunity during the day they will need to make up for
the missed opportunity by trading more volume at the close. Otherwise,
the order may not complete by the end of the day.
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Fig. 12.4A illustrates the intraday trading patterns for large cap and small cap
stocks. As shown in the figure, both large cap and small cap stock trading
volume spikes toward the close and closing volumes are much higher than
opening volumes. Intraday volume profiles are used by algorithms to deter-
mine how many shares of the order to execute in each trading interval.

Fig. 12.4B illustrates the cumulative intraday volume pattern for stocks.
Notice the increase in cumulative volume for small cap stocks. This is
caused by the increase in trading volumes into the close. Cumulative
intraday volume profiles are used by algorithms to determine the percentage
of the order that is to be completed at a specified point in time and to forecast
the remaining volume on the day.
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Forecasting Daily Volumes 319



Forecasting Intraday Volume Profiles
For the most part, intraday volume profile curves are very stable, and do not
exhibit statistical change day to day, week to week, month to month, or
even year to year. Our research has found the following items. Many of
these findings are counter to what is stated by brokers and vendors, but
we have not been provided with any statistical findings from these parties
to contradict our findings. Broker sound bites, however, often provide
nice marketing material.

We encourage readers to review the following findings, and to repeat these
analyses to determine if our findings hold true in the market. Our findings are:

n A general intraday volume profile by market cap category is appropriate
for algorithmic trading and analysts do not need to construct and main-
tain stock-specific intraday profiles.

n Algorithms can use a large cap, midcap, or small cap intraday volume
profile and achieve the same results if they were to use a stock-specific
volume profile.

n A profile with more shares traded in the morning and fewer shares traded
in the afternoon compared to the intraday volume profile is known as a
front-loaded profile. A profile with fewer shares traded in the morning
and more shares traded in the afternoon compared to the intraday volume
profile is known as a back-loaded profile. We have not found any
evidence suggesting that if a stock is trading fewer shares in the early
morning, then there will be more shares traded in the afternoon. We
have not found any evidence suggesting that if a stock is trading more
shares in the morning then it will trade fewer shares in the afternoon.
o If a stock is trading more volume in the morning then there is likely to

be more volume in the afternoon as well, and the day will have more
volume traded.

o If a stock is trading less volume in the morning then there is likely to
be less volume in the afternoon as well, and the day will have less
volume traded.

o There is no statistical evidence showing that it is possible to predict a
normal trade day, a front-loaded trade day, or a back-loaded trade day
from the early period volumes on the day for a stock.

n We have found that the intraday volume profile is based on the type of
day. For example, there are special days that result in a different intraday
volume profile for a stock. These special days are:
o FOMC/Fed day: midafternoon spike in volume at 2:15 p.m.
o Triple/quadruple witching day: increased volume on the day.

Much higher percentage of volume traded in the opening and closing
auctions, more pronounced morning and afternoon spikes.
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o Company earnings: increased volume on the day. Depending on the
time of the announcement, there will be increased volume traded at
the open than at the close.

o Index change: there will be an increase in daily volume with a
dramatic large spike in the afternoon and in the closing auctions:
back-loaded profile.

o Month-end: increased volume on the day. Back-loaded profile with
dramatically more volume traded in the closing auction.

o Quarter-end: increased volume on the day. Back-loaded profile
with dramatically more volume traded in the closing auction. Not
as pronounced as for month-end.

o Early close: less volume on the day due to fewer trading hours.
Exhibits front-loaded trading pattern with less volume traded in the
closing auction.

Predicting Remaining Daily Volume
The expected remaining volume on the day RDV(t) can be forecasted using
the intraday volume profiles, the stock’s ADV, and the actual cumulative
volume traded on the day from the open through the current time. This is
as follows Table 12.4:

RDVðtÞ ¼ cdf ðtÞ$ Actual VolumeðtÞ
ADV

Table 12.4 Special Event Day VolumesdPercentage of Normal Day’s Volume.

Normal
Day FOMC

Triple
Witching

Company
Earnings

Index
Change

Month
End

Quarter
End

Before/After
Holidays

Early
Close

Daily Volumes

SP500 100% 104% 119% 184% 124% 107% 105% 92% 33%
R2000 100% 104% 145% 192% 285% 109% 106% 96% 48%

Intraday Volume

SP500 100% 105% 97% 186% 106% 103% 100% 91% 32%
R2000 100% 105% 110% 193% 183% 103% 102% 95% 47%

Market on Close %

SP500 3.3% 2.9% 10.2% 4.4% 20.8% 7.8% 7.8% 3.7% 0.9%
R2000 4.0% 3.1% 11.6% 6.1% 110.7% 10.3% 8.4% 4.5% 2.1%

Market on Open %

SP500 0.7% 0.7% 15.6% 1.3% 0.7% 0.7% 0.6% 0.8% 0.6%
R2000 1.3% 1.1% 29.8% 2.5% 1.3% 1.1% 0.9% 1.4% 1.4%

Source: Journal of Trading/The Science of Algorithmic Trading and Portfolio Management.
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where

cdf(t) ¼ cumulative intraday volume percentage at time t
ADV ¼ stock’s ADV
Actual Volume(t) ¼ actual volume traded on the day from the open
through the current time
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Chapter13
Algorithmic Decision-Making

Framework

INTRODUCTION
We introduce readers to the algorithmic decision-making framework. The
process includes macro- and microlevel decisions specified prior to trading
to ensure consistency between the “the trading goal” and the “investment
objective.” The macrolevel decision refers to the best execution strategy
most consistent with the investment objective. The microlevel decision
refers to how the algorithm will behave in real-time and how it will adapt
to changing market conditions. Subsequently, it is the goal of the limit order
model and smart order router to ensure that order placement and actual
executions adhere to the investor’s specifications. Only investors who
possess full knowledge and proper specification of these criteria will be
positioned to achieve best execution.

Before we discuss our algorithmic decision-making framework, it is impor-
tant to restate a few important concepts. Algorithmic trading is the comput-
erized execution of financial instruments following prespecified rules and
guideline. Algorithmic trading provides many benefits. They do exactly
what they are instructed to do, and do it well. However, one of the more
unfortunate aspects of algorithmic trading is that they do exactly what
they are instructed to do. If they are not provided with instructions that
are in the best interest of the fund over all possible sets of market events,
the results will likely be unfavorable execution and subpar performance.

Algorithmic decision frameworks have been previous studied from the
perspective of the macro and micro viewpoint. For example, macro deci-
sions have been studied by Barra (1997), Bertsimas & Lo (1998), Almgren
& Chriss (1999, 2000), Cox (2000), and Kissell et al. (2004). Microdeci-
sions have been studied more recently such as in Journal of Trading’s
“Algorithmic Decision-Making Framework,” (Kissell & Malamut, 2006),
and Institutional Investor’s Guide to Algorithmic Trading, “Understanding

Algorithmic Trading Methods, Second Edition. https://doi.org/10.1016/B978-0-12-815630-8.00013-2
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the P&L Distribution of Trading Algorithms,” (Kissell & Malamut, 2005).
Additionally, Almgren and Lorenz, analyzed real-time adaptive strategies
in Institutional Investor’s Algorithmic Trading III: Precision, Control,
Execution, “Adaptive Arrival Price,” (Spring 2007), as also in Journal of
Trading’s “Bayesian Adaptive Trading with a Daily Cycle,” (Fall 2006).

We now expand the previous research findings and provide an appropriate
algorithmic framework that incorporates both macro and microdecisions.
Our focus is with regards to single stock trading algorithms and single stock
algorithmic decisions.

In Chapter 9, Portfolio Algorithms, we provide an algorithmic decision-
making framework for portfolio and program trading.

EQUATIONS
The equations used to specify macro and microtrading goals are stated
below. Since we are comparing execution prices to a benchmark price in
$/share units our transaction cost analysis will be expressed in $/share units.
For single stock execution (in the US) this is most consistent with how pri-
ces and costs are quoted by traders and investors. Additionally, our process
will incorporate the trading rate strategy a but readers are encouraged to
examine and experiment with this framework for the percentage of volume
and trade schedule strategies. These transaction cost models were presented
in Chapter 7, Advanced Algorithm Forecasting Techniques.

Variables
I0 ¼ Instantaneous Impact in $/Share
MI0 ¼ Market Impact in $/Share
TR0 ¼ Timing Risk in $/Share
PA0 ¼ Price Appriciation Cost in $/Share
X ¼ Order Shares
Y¼Shares Traded (Completed)
(XeY) ¼ Unexecuted Shares (Residual)

q ¼ Y
X ¼ Percentage of Shares Traded

ð1 �qÞ ¼ X�Y
X ¼ Percentage of Shares Remaining

ADV ¼ Average Daily Volume
Vt ¼ Volume over Trading Horizon (excluding the order)
s ¼ Annualized Volatility
a ¼ Trade Rate at Time
POV¼Percentage of Volume
Pt ¼ Market Price at Time ¼ t

324 CHAPTER 13 Algorithmic Decision-Making Framework



Pt ¼ Realized Average Execution Price at Time ¼ t
m ¼ Natural Price Appreciaion of the Stock ðnot caused by
trading imbalanceÞ

Important Equations
I-Star

I 0$=Share ¼ a1$

�

X

ADV

�a2

$sa3$P0$10
�4

Market Impact

MI 0$=ShareðaÞ ¼ b1$I
0$aþ ð1� b1Þ$I 0

Timing Risk

TR0
$=ShareðaÞ ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$a�1

r

$P0

Price Appreciation Cost

PA0
$=ShareðaÞ ¼

X

ADV
$
1
at
$mt

Future Price

EðPnÞ ¼ P0 þ ð1� b1Þ$I 0

Benchmark Cost

Cost ¼ �

P�Pb

�

$Side

Trade Rate

at ¼ Y

Vt

Percent of Volume

at ¼ Y

Y þ Vt

Important Note: for our analysis we are using the market impact formulation
with the trade rate strategy where with a4 ¼ 1.

ALGORITHMIC DECISION-MAKING FRAMEWORK
The algorithmic decision-making framework is about traders instructing
the algorithm to behave in a manner consistent with the investment
objectives of the fund. If traders enter orders into an algorithm without
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any prespecified rules, or with rules that are not consistent with their invest-
ment objective, the only thing we can be certain of is that the algorithm will
not achieve best execution. Of course, the algorithm may realize favorable
prices at times, but this would be due to luck rather than actual intentions.
Best execution is only achieved through proper planning.

Best execution is evaluated based on the information set at the time of the
trading decision (e.g., ex-ante). Anything else is akin to playing Monday
morning quarterback.

The algorithmic decision-making framework consists of:

(1) Select Benchmark Price
(2) Specify Trading Goal (Best Execution Strategy)
(3) Specify Adaptation Tactic

Select Benchmark Price
Investors need to first select their benchmark price. This could be the cur-
rent price, which is also known as the arrival price, a historical price such as
the previous day’s closing price, or a future price such as the closing price
on the trade day. These are described as follows:

Arrival Price Benchmark
The arrival price benchmark is often selected by fundamental managers.
These are managers who determine what to buy and what to sell based
on company balance sheets and long-term growth expectations. These man-
agers may also use a combination of quantitative and fundamental (e.g.,
“quantimental” managers) information to construct portfolios based on
what stocks are likely to outperform their peer group over time. These man-
agers often have long-term view on the stocks.

The arrival price benchmark is also an appropriate benchmark price for sit-
uations where a market event that triggers the portfolio manager or trader to
release an order to the market.

The arrival price benchmark is:

E0½Arrival Cost� ¼
�

P�P0

�

$Side

The E0 notation here is used to denote that this is the expected cost at the
beginning of trading. The expected cost for a buy order with strategy
expressed in terms of trading rate is:
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Let,

P0 ¼ P0

P ¼ P0 þ ðb1 $ I 0 $aÞ þ ð1� b1Þ$I 0

Then the expected cost is:

E0

�

P�P0

� ¼ ðb1 $ I 0 $aÞ þ ð1� b1Þ$I 0 ¼ MI 0

And we have,

E0½Arrival Cost� ¼ ðb1 $ I 0 $aÞ þ ð1� b1Þ$I 0

For the arrival price benchmark, the expected cost is equal to the market
impact of the trade.

Historical Price Benchmark
Quantitative managers who run optimization models may select a histori-
cal price as their benchmark if this represents the price used in the optimi-
zation process. Until recently, many quant managers would run optimizers
after the close incorporating the closing price on the day. Optimizers
determine the mix of stocks and shares to hold in the portfolio and the cor-
responding trade list for the next morning. These orders are then submitted
to the market at the open the next day. The overnight price movement
represents a price jump or discontinuity in the market that the trader is
not able to participate with and represents either a sunk cost or a savings
to the fund at the time trading begins. If the manager is looking to buy
shares in a stock that closed at $30.00 but opened at $30.05 the $0.05/
share move represents a sunk cost to the manager. But if the stock opened
at $29.95 the $0.05/share move represents a savings to the manager.
Depending upon this overnight price movement the managers may change
the trading strategy to become more or less aggressive. Even in situations
where the portfolio manager uses current market prices in the stock selec-
tion process there will likely be some delay (although it may be very short
in duration) in determining what stocks and share need to be purchased
and/or sold and releasing those orders to the market. Thus, by the time
these orders are entered into the market the current market price will be
different than the historical price benchmark that was used to determine
what stocks to hold in the portfolio.

The historical benchmark price is:

E0½Historical Cost� ¼
�

P�Phist

�

$Side
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The E0 notation is used to denote that this is the expected cost at the begin-
ning of trading. This cost for a buy order and a strategy expressed in terms of
trade rate using our formulas above is described as follows:

Let,

Phist ¼ Phist

P ¼ P0 þ ðb1 $ I 0 $aÞ þ ð1� b1Þ$I 0

Then the difference is:

E0

�

P�Phist

� ¼ ðb1 $ I 0 $aÞ þ ð1� b1Þ$I 0 þ ðP0 �PhistÞ

If we define the delay cost to be (P0�Phist) our historical cost is:

E0

�

P�Phist

� ¼ MI 0 þ Delay

And we have:

E0½Historical Cost� ¼ ðb1 $ I 0 $aÞ þ ð1� b1Þ$I 0 þ ðP0 �PhistÞ
Notice that this is the same cost function as the arrival cost above plus a
delay component that is a constant. When a manager selects the previous
night’s closing price as the benchmark price and start trading at the open
the “Delay” cost represents the overnight price movement and translates
to either a sunk cost or savings to the fund.

Unfortunately, as managers’ claim time and time again, this movement rep-
resents a sunk cost much more often than it represents a savings because
managers as a group do a very good job at figuring out what stocks are mis-
priced. Thus, if there is any gap in trading, such as the overnight close, the
rest of the market will usually learn this mispricing and adjust its market
quotes to reflect the proper pricing at the open the next day.

Future Price Benchmark
Index managers often select the closing price to be their benchmark because
this is the price that will be used to value the fund. Any transaction that is
different than the closing price on the day of the trade will cause the actual
value of the fund to different from their index benchmark price thus causing
tracking error. To avoid incremental tracking error and potential subpar per-
formance, index managers often seek to achieve the closing price on the day.

An interesting aspect of using a future price as the benchmark is that your
performance will look better than it is because the future price will also
include the permanent impact of the order. So, while permanent impact
will have an adverse effect on the arrival price or historical price
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benchmark, it will not have any effect on a future price benchmark (from a
cost perspective). Investors are expected will perform better against a future
price benchmark by the amount of the permanent impact than they will
against the arrival price.

The future cost derivation is explained as follows:

E0½Future Cost� ¼
�

P�EðPnÞ
�

The E0 notation is used to denote that this is the expected cost at the begin-
ning of trading. Thus,

EðPnÞ ¼ P0 þ ð1� b1Þ$I 0

P ¼ P0 þ ðb1 $ I 0 $aÞ þ ð1� b1Þ$I 0

The expected future cost is:

E0

�

P�EðPnÞ
� ¼ ðb1 $ I 0 $aÞ ¼ Temporary Market Impact

And we have,

E0½Future Cost� ¼ ðb1 $ I 0 $aÞ
Notice that the future cost function only consists of temporary market impact.
As stated, this is because permanent impact is reflected in the future price. So,
the future cost function that only temporary impact will be lower than the
arrival cost function that includes both temporary and permanent impact.

COMPARISON OF BENCHMARK PRICES
A comparison of the efficient trading frontier for the different benchmark
prices is shown in Fig. 13.1. The arrival price frontier is the middle curve
in the graph. The arrival price cost consists of both temporary and permanent
impact measured from the price trading begins. In this example, the previous
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n FIGURE 13.1 Efficient Frontier Graphs.
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close frontier has the highest cost for the corresponding level of timing risk
due to adverse overnight price movement (sunk cost). The previous close
frontier could be higher, lower, or the same as the arrival price frontier.
The future price benchmark, such as the day’s closing price, is the lowest
frontier. It only consists of the temporary impact because the future price
will be comprised of the permanent impact cost.

If an investor is ever given the choice of which benchmark to use to judge per-
formance it behooves the investors to select a future price benchmark since this
cost will likely be less than a historical or arrival price benchmark. The future
price will always include permanent impact of the order and the temporary
impact that has not yet fully dissipated (see Chapter 4, Market Impact Model).

Specify Trading Goal
The next step in the process is to select the trading goal so that it is consis-
tent with the underlying investment objective. To assist in the process, we
describe five potential best execution strategies for investors. While these
may not comprise all possibilities, they do address needs for many invest-
ment professionals. Techniques to specifying the macro level trading goal
has been previously studied by Kissell, Glantz, and Malamut (2004). We
expand on those findings.

These trading goals are: (1) minimize cost, (2) minimize cost with risk
constraint, (3) minimize risk with cost constraint, (4) balance the tradeoff
between cost and risk, and (5) price improvement.

1. Minimize Cost

The first criterion “minimize cost” sets out to find the least cost trading
strategy. Investor may seek to find the strategy that minimizes market
impact cost. If investors have an alpha or momentum expectation over
the trading horizon, they will seek to minimize the combination of market
impact cost and price appreciation cost. The solution of this goal is found
via optimization.

Min MI 0 þ Alpha0

In situations where investors do not have any alpha view or price mo-
mentum expectation the solution to this optimization will be to trade as
passively as possible. That is, participate with volume over the entire desig-
nated trading horizon because temporary impact is a decreasing function
and will be lowest trading over the longest possible horizon. A VWAP strat-
egy in this case is the strategy that will minimize cost. In situations where
investors have an adverse alpha expectation the cost function will achieve a
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global minimum. If this minimum value corresponds to a time that is less
than the designated trading time the order will finish early. If the minimum
value corresponds to a time that is greater than the designated trading time
then the solution will again be a VWAP strategy.

Example: An investor is looking to minimize market impact and price
appreciation cost. The optimal trading rate to minimize this cost is found
through minimizing the following equation:

Min : b1 $ I
0$aþ ð1� b1Þ$I 0 þ X

ADV
$
1
a
$m

Solving for the optimal trading rate a� we get:

a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X$m

b1$I$ADV

r

Fig. 13.2A illustrates a situation where investors seek to minimize market
impact and alpha. Notice in this case that the efficient trading frontier de-
creases and then increases and has a minimum cost at $0.16 corresponding
timing risk of $0.65. The trading rate that will minimum total cost is 9%.
This is denoted by strategy A1 in the diagram.

2. Minimize Cost with Risk Constraint

Our second criterion is to minimize cost for a specified quantity of risk. The
risk constraint is often specified by portfolio manager or by firm mandate
that will not allow risk to exceed the specified level <�. The optimization is:

Min Cost
s:t: TR0 ¼ <�

Example: An investor looking to minimize market impact cost (not including
price appreciation) subject to a specified level of timing risk will determine
the optimal trading rate through minimizing the following equation:

Min : b1 $ I
0$aþ ð1� b1Þ$I 0

s:t: s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$a�1

r

$P0 ¼ <�

The optimal trading rate is:

a� ¼ X$s2$P2
0

3$250$ADV$<�2

Fig. 13.2B illustrates this trading goal through strategy A2. Here, A2 is the
strategy that minimizes cost for a risk exposure of $0.40/share. It has an
expected cost of $0.20/share and corresponds to a trading rate of 25% and
a POV rate of 20%.
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3. Minimize Risk with Cost Constraint

A portfolio manager’s preferred investment stock is LMK with an expected
return of 10% and the next most attractive stock is RLK with an expected
return of 9.5%. The manager determines that X shares can be purchased at
a cost of 50bp (0.50%). Purchasing any more shares of LMK will cause
the cost to be greater than the incremental return 50bp and the manager would
be better off investing some portion of the dollars in the second most
attractive stock. Therefore, the manager decides to transact the X shares using
at strategy that will minimize risk for a cost of 50bp. This optimization is as
follows:

Min TR0

s:t: Cost0 ¼ C�

Example: An investor looking to minimize timing risk for a specified level of
market impact cost (not including price appreciation) will determine the
optimal trading rate through minimizing the following equation:

Min : s $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$a�1

r

$P0

s:t: b1$I
0$aþ ð1� b1Þ$I 0 ¼ C�

Solving for the optimal trading rate we get:

a� ¼ C� � ð1� b1Þ$I
b1$I

Fig. 13.2C illustrates the BEST strategy for an investor with a maximum cost
of $0.10/share. Here, strategy A3 has the lowest timing risk is $0.73/share,
and corresponds to a trading rate of 7% and a POV rate of 6.5%.

4. Balance Tradeoff between Cost and Risk

The fourth criterion “Balance Tradeoff between Cost and Risk” is used by
investors with a certain level of risk aversion defined by the parameter
“l.” Risk adverse investors will set l to be high to avoid market exposure
and risk neutral investors set l to be small. Setting lambda to be zero is
equivalent to our first criterion e minimize cost e since the risk term would
be ignored.

This trading goal is also known as the standard “costerisk” optimization or
algorithmic optimization objective function. It is formulated as follows:

Min Cost0 þ l$Risk0

Example: An investor looking to minimize the combination of market impact
cost (not including price appreciation) and timing risk for a specified risk
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aversion value l will determine the optimal trading rate through minimizing
the following equation:

Min : ðb1 $ I 0 $aþð1� b1Þ $ I 0Þ þ l$

 

s $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$a�1

r

$P0

!

Solving for the optimal trading rate we get:

a� ¼

0

B

@

b1$I

l$s$P0$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
$
1
250

$
X

ADV

r

1

C

A

2
3

Notice that this optimal solution is in terms of the investors risk aversion
parameter.

Fig. 13.2D illustrates the BEST strategy for an investor with a risk aversion
l ¼ 1. In this case the solution is at the point where the tangent to the ETF
is �1. This is noted by strategy A4 on the ETF and has cost ¼ $0.28/share
and timing risk ¼ $0.25. The trading rate that achieves this optimal strategy
is 57% and corresponds to POV ¼ 36%.

5. Price Improvement

The fifth criterion “Price Improvement” is used by investors wishing to
maximize the probability that they will execute more favorably than a spec-
ified cost. Usually, this is the goal of participants seeking to maximize
short-term returns or exploit a pricing discrepancy. Additionally, it is
often the goal used by agency traders seeking to maximize the likelihood
of outperforming a cost such as a principal bid, or the strategy utilized by
a principal trading desk looking to minimize chances of gamblers ruin
and maximize profiting opportunity. The proof of the Price Improvement
strategy was derived by Roberto Malamut (see Optimal Trading Strategies,
pg. 225, and Financial Research Letters, A practical framework for esti-
mating transaction costs and developing optimal trading strategies to
achieve best execution, pg. 45).

The price improvement optimization is:

Max : ProbðCost�C�Þ
where C* is the specified targeted price, cost, or principal bid that the
investor is seeking to outperform. Mathematically, this optimization can
also be written as:

Max :
C� � E½Cost�

TR0

Example: An investor seeking to maximize the probability of achieving
price improvement over a market impact cost of C* (not including price
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appreciation cost) will determine the optimal trading rate via the following
optimization:

Max :
C� � ðb1$I 0$aþ ð1� b1Þ$I 0Þ

s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$a�1

r

$P0

Solving for the optimal trading rate we get:

a� ¼ C� � K

3$b1$I

Fig. 13.2E illustrates the process used to determine the price improvement
strategy for a cost of $0.30/share. The top graph shows the efficient trading
frontier with cost on the y-axis and timing risk on the x-axis. The bottom
graph shows the probability that each of the strategies on the efficient trading
frontier will incur a cost less than $0.30/share. The probability was deter-
mined assuming a normal distribution with mean equal to the expected
cost (y-axis) and standard deviation equal to the timing risk (x-axis). The
strategy that maximizes the likelihood that the cost will be less than
$0.30/share is found by drawing a line from the cost of $0.30 on the y-
axis tangent to the efficient trading frontier. This is denoted by strategy
A5 and has expected cost of $0.18/share and timing risk of $0.40/share.
The strategy has a 62.1% change of outperforming $0.30/share. Strategy
A6 has an expected cost of $0.30/share and timing risk of $0.23/share so
a probability of 50% of outperforming $0.30/share. Obviously, any strategy
to the left of A6 will have an expected cost higher than $0.30/share so the
probability that the actual cost will be less than $0.30/share will be less
than 50%. Strategy A7 has an expected cost of $0.10/share and timing
risk of $0.84/share. The corresponding probability that this strategy will
have a cost less than $0.30/share is 59.7%. Notice the shape of this probabil-
ity curve. The probability of outperforming $0.30/share increases fast until
strategy A5 (the highest probability of outperforming). The probability of
outperforming $0.30/share decreases at a slower rate as we execute more
passively. This tells us that it is more beneficial to trade more passively
than more aggressively when seeking to outperform a specified price.

Further Insight
Many times, traders will specify the strategy in simpler terms. In some of
cases the strategies are well thought out and developed, but in other cases,
they are simply instructions for the algorithms to follow and may or may not
be in the best interested of the fund. These strategies include:
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Volume Based.A volume-based strategy will instruct the algorithm to follow
a specified trading rate such as 15% or 20% of the volume. At times, these
trading rate values are consistent with the investment objective of the fund
and thus achieve best execution, but in other cases they will not be consistent
with the investment objective and will not achieve best execution regardless
of the actual performance. The volume-based strategy could be in terms of
trade rate }a} or percentage of volume “POV."

Price Based. A price-based algorithm will instruct the algorithm to trade at a
certain rate based on market prices. As prices become more or less favorable
these algorithms will trade either faster or slower. These include algorithms
such as ladder and step functions.

Hyperaggressive. A hyperaggressive algorithm is one that executes as many
shares as possible within a specified price level. If actual prices are more
favorable than the specified price these algorithms will transact as aggres-
sively as they can.

Passive/Dark Pool. The passive or dark pool algorithms are those that will
transact primarily in dark pools and crossing networks. Usually these algo-
rithms do not have a specified maximum trading rate such as is associated
with the volume-based algorithms. They can participate with as much vol-
ume as possible provided they only transact in the dark pools. Investors
believe that if they are trading only in dark pools then they are minimizing
their market impact cost and information leakage. While this is a widely held
belief, it is not correct. Market impact cost is caused by buying/selling imbal-
ance. If you are on the side of the imbalance you will incur a higher cost. If
you enter shares into a dark pool and your entire order is traded then there is
a counterparty with at least as many shares as your order and possibly more
shares, otherwise, you would not have had your entire order executed. If you
enter shares into a dark pool and only a portion of your order is executed then
there is counterparty with an order that was smaller than you order, other-
wise, your entire order would have been executed. If you enter an order
into a dark pool but do not have any shares traded, then there were not
any counterparties in the dark pool at that time.

Get-Me-Done. The get-me-done type of algorithms will trade a specified
rate until the order is complete. However, if there is ample liquidity in
the order book the algorithm will accelerate trading and sweep the book
providing that doing so will complete the order. Usually traders will not
want to accelerate trading and sweep the book complete, because by doing
so they will likely signal their trading intentions to the market which may
result in higher future prices (buy order), lower future prices (sell order),
and higher permanent impact for all orders. But in the case where the order
would be completed by sweeping the book the less favorable future prices
will not affect the performance of the investor. One way to disguise trading
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intentions is to sweep all liquidity in the book except for the final 100
shares so that you do not affect the market price or NBBO. Many algo-
rithms are set up to react to changing prices or quotes and utilizing this
type of sweeping technique would keep those algorithms at baydat least
for the time being anyway.

When we analyze our trading goals it is important to point out that every
BEST strategy has an expected cost (mean) and timing risk (uncertainty)
component. Once the strategy on the efficient trading frontier is determined
the expected cost and timing risk value are shown by drawing a horizontal
line from the strategy to the y-axis to determine the expected cost and a ver-
tical line from the strategy to the x-axis to determine the corresponding
timing risk. Additionally, drawing a line that is tangent to the strategy on
the efficient trading frontier to the y-axis results in the value where the strat-
egy will have the highest probability of outperforming. In all case these
values unique except for the situation where we seek to minimize cost (mar-
ket impact and alpha). In this case, the tangent from strategy A1
(Fig. 13.2A) will be a horizontal line, and the expected cost of the strategy
and the cost where the strategy will have the highest probability of outper-
forming will be the same. The strategy will have a 50% chance of outper-
forming that particular cost.

Specify Adaptation Tactic
The third step in the algorithmic decision-making process is to specify how
the algorithm is to adapt to changing market conditions. This is also
commonly referred to as dynamic optimization or adaptive pricing. Mathe-
maticians may cringe at phrase “dynamic optimization” in this instance
since this process is really “real-time reoptimization” and not true mathe-
matical “dynamic optimization.” But regardless of the nomenclature used
the goal is for investors to define how the algorithm will react to changing
market conditions.

There are often times when investors may not want the algorithm to adapt to
changing market conditions. For example, investors seeking to achieve the
day’s closing price would not want to make any adjustments to the algo-
rithm because it may cause the algorithm to finish early and increase
tracking error compared to the closing price. Investors seeking to achieve
the VWAP price would want to adhere to the intraday volume profile
regardless of price movement or volatility. Additionally, investors trading
hedged baskets or hedged portfolios may not want to deviate from their
initial prescribed strategy regardless of market conditions since doing so
may ruin the hedge and increase risk exposure. Portfolio adaptation tactics
are further discussed in the chapter Portfolio Algorithms and Trade
Schedule Optimization.
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Below we discuss three methodologies for revising intraday algorithmic
trajectories based on expected total trading cost. These are: targeted
cost, aggressive in-the-money (AIM), and passive in-the-money (PIM)
strategies.1 These studies also provide an in-depth analysis surrounding
the underlying profit and loss distributions corresponding to these tactics
as well as real time solutions.

Adaptation tactics and how they influence algorithmic decision and trading
performance were previously studied by Kissell & Malamut (2005, 2006)
and Almgren & Lorenz (2006, 2007). We follow the approach from the
Journal of Trading introduced by Kissell & Malamut (2005, 2006).

Projected Cost
At the beginning of trading the projected cost is equal to the initial cost es-
timate (described in step two above). But after trading begins the projected
cost will be comprised of four components: realized cost, momentum cost,
remaining market impact cost, and alpha trend cost.

This is explained as follows:

Suppose that X represents the total order shares, Y represents the shares
that have traded, and (XeY) represents the shares that have not yet traded
(unexecuted shares). Then,

q ¼ Y
X represent the percentage of shares traded.

ð1�qÞ ¼ ðX�YÞ
X represent the percentage of shares not yet traded.

Additionally, let,
E0[$] ¼ initial time expectation. The expected cost and prices at the
beginning of trading.
Et[$] ¼ time expectation. The expected cost and prices at the current
point in time.
E0[Cost] ¼ C* initial estimated cost.
Pt ¼ market price at time t.
Pt ¼ average execution price of the Y shares at time t.

Then the cost components are:

Realized Cost: the actual cost of the Y traded shares. This is:

RealizedðCostðtÞÞ ¼ q$
�

Pt �P0

�

$Side

1Tom Kane, former Managing Director at JP Morgan and Merrill Lynch, introduced the
naming of the Aggressive in the Money (AIM) and Passive-in-the-Money (PIM) adaptation
tactics. Furthermore, unlike many of the names chosen for algorithms, the AIM and PIM
provide investors with a description of their behavior.
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Momentum Cost: the price movement in the stock from the time trading
began to the current time. This price movement results in either a sunk
cost or savings to the investor. Momentum cost is applied to the number
of unexecuted shares since these are the shares that will realize the cost or
realize the savings. This is:

Et½MomentumðCostÞ� ¼ ð1� qÞ$ ðPt �P0Þ$Side
Remaining Market Impact: the remaining market impact cost of the unexe-
cuted shares. This is the expected price impact that will result from trading
the unexecuted shares in the current market environment (liquidity and
volatility) and with the current trading rate. Mathematically this is:

Et½MI 0� ¼ ð1� qÞ$ðb1 $ I 0 $at þð1� b1Þ $ I 0Þ
Alpha Trend: the cost that will result due to the alpha trend over the trading
horizon. Mathematically this is:

Et½Alpha0� ¼ ð1� qÞ$ X

ADV
$
1
at
$mt

where mt is the alpha trend over the trading horizon expressed in $/share.

Notice that the remaining market impact cost and alpha trend are the only
components that can be affected by the trading strategy. Investors will
seek to manage projected costs by trading either faster or slower based
on market conditions, price momentum, and desired adaptation tactic.

The timing risk of these unexecuted shares represents the uncertainty sur-
rounding the market impact estimate for the remaining shares. This is:

Et½ TR0� ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� qÞ$ X

ADV
$
1
at

r

$P0

The projected cost of the order is then,

Et½Projected Costð$ = shareÞ� ¼ RealizedðCostðtÞÞ
¼ þEt½Momentum� þ Et½MI 0� þ Et½Alpha0�

Written formulaically this is:

Et½Projected� ¼ q$
�

Pt �P0

�

$Side$ð1� qÞðððPt �P0Þ $ SideÞ
þ ðb1 $ I 0 $at þð1� b1Þ $ I 0ÞÞ
þ ð1� qÞ$ X

ADV
$
1
at
$mt

Notice that this projected cost expression consists of a component that is
“sunk” and “unavoidable” and a component that is “controllable.” The
sunk cost component is comprised of the realized cost for the transacted
shares. The unavoidable component is comprised of the momentum cost
and permanent market impact cost. The controllable component is
comprised of the price impact of the shares that are to be traded and alpha
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cost of these shares. These are also the component that can be managed
through proper selection of the trading strategy.

Recall that our initial cost is denoted as E0[Cost] and is expressed in $/share
but could also be expressed in total dollars or in basis points.

For simplicity, we proceed in the examples below without the alpha term in
basis point units. We leave it as an exercise for our readers to work through
the math including the alpha cost component.

Let Kt represent the costs that are unavoidable (realized, momentum, and
permanent):

Kt ¼ q$
�

Pt �P0

�

$Sideþ ð1� qÞ$��Pt �P0

�

$ Side
�þ ð1� qÞ$ð1� b1Þ$I 0

Then the projected cost can be simplified as follows:

EtðCostÞ ¼ Kt þ ð1� qÞðb1 $ I 0 $atÞ
Where at is the trading rate that will be used from the current time through
the completion of the order.

Target Cost Tactic
The targeted cost adaptation tactic will minimize the squared difference be-
tween the projected cost and original cost from the best execution strategy.
This tactic will always revise the strategy to put us back on track to get as
close as we can to the original expected trading cost. Here, the strategy will
become more aggressive in times of favorable price movement and more
passive in times of adverse price movement.

Mathematically, the target cost optimization is found by minimizing the
following:

Min L ¼ ðE0ðCostÞ � EtðCostÞÞ2

s:t: LB � �at � UB�

The general optimization needs to include expectations for volume and
volatility over the remainder of the trading period. Volatility can be adjusted
by the HMA-VIX adjustment described in Chapter 6, Price Volatility. The
upper and lower bounds are included to ensure that the optimal strategy will
be within levels specified by the investors. Some investors request to trade
no slower than some level (e.g., �5%) and no faster than another level
(e.g., �40%). Furthermore, most investors do require completion of the
order by some end time. Thus, the optimal strategy needs to be at least
fast enough to ensure that trading will be completed by the specified end
time or market close.
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For the trading rate strategy, the targeted cost adaptation tactic objective
function is:

Min L ¼ ðC� � ðKt þ ð1� qÞðb1$I 0$atÞÞÞ2

Where C* is the original expected cost from the BES strategy, and Kt is the
unavoidable cost at time t based on realized cost and market movement.
Solving for at we get,

at ¼ C� � Kt

ð1� qÞðb1$I 0Þ
This rate is then adjusted to ensure it satisfies our boundary conditions. That
is written mathematically as:

a�
t ¼ minðmaxðLB;atÞ;UBÞ

Target Adaptation Tactic

C2< C1 Bad RiskGood Risk

Constant
Trade Rate

Target Tactic

(A)

Comparison of Target to AIM

Adaptation Tactic

C3< C2 Bad RiskGood Risk

Target Strategy

AIM Tactic

(C)

AIM Adaptation Tactic

C3< C1 Good Risk Bad Risk

Constant Trade Rate

AIM Tactic

(B)

PIM Adaptation Tactic

C1< C4 Bad RiskGood Risk

Constant Trade Rate

PIM Tactic

(D)

n FIGURE 13.3 Adaptation Tactic. (A) Target Adaption Tactic, (B) AIM Adaptation Tactic, (C)
Comparison of Target to AIM Adaptation Tactic, (D) PIM Adaptation Tactic.
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Fig. 13.3A compares the cost distribution from a targeted cost adaptation
tactic to the cost distribution of a constant trading rate. The expected cost
of the targeted rate C2 will be lower than the constant rate C1 since this tactic
takes advantage of favorable market conditions. However, since the trading
rate executes slower in times of adverse price movement it will exposure the
trader to higher market risk. This is shown in the cost distribution with a
fatter tail at the right signifying higher probability of these higher costs.
Additionally, in times of continued favorable price momentum over the
life of the defined trading horizon this tactic will not have the opportunity
to transact with the most favorable market prices since it is likely that the or-
der will be completed before the most favorable prices occur in the market.

Aggressive in the Money
The AIM adaptation tactic will maximizes the probability that the actual cost
will be less than the original cost from the best execution strategy. This opti-
mization is equivalent to maximizing the Sharpe Ratio of the trade where
performance (return) is measured as the difference between original cost
and projected cost. This type of optimization has also been defined as maxi-
mizing the information ratio of the trade (Almgren & Chriss, 2000). The
AIM adaptation tactic becomes more aggressive in times of favorable price
momentum and less aggressive in times of adverse price momentum.

If investors selected the Price Improvement best execution strategy in step 2 it is
essential that we use the same exact cost in the AIM adaptation strategy, other-
wise, the resulting strategywill have a lower probability of executingmore favor-
ably than initially intended and would not be consistent with the trading goal.

Mathematically, the AIM tactic is found by maximizing the following
equation:

Min L ¼ E0ðCostÞ � EtðCostÞ
EtðTRÞ

s:t: LB � �at � UB�

Here, E0(Cost) is either the original expected cost from the BES in step 2 or
the cost used to generate the price improvement strategy in step 2. And
Et(Cost) and Et(TR) are the expected projected cost and timing risk for the
order at time t. Also, the expected cost term needs to include the alpha
cost component in times when traders have a short-term alpha expectation.

For the trading rate strategy (without an alpha term) the AIM adaptation tac-
tic objective function is:

Min L ¼ C � � ðKt þ ð1� qÞðb1$I 0$atÞÞ
s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� qÞ$ X

ADV
$
1
at

r

$P0

342 CHAPTER 13 Algorithmic Decision-Making Framework



Where C* is either the original expected cost from the BES strategy or the
cost used to generate the price improvement best execution strategy and Kt is
the unavoidable cost at time t based on realized cost and market movement.

Solving for at we get,

at ¼ C� � Kt

3$ð1� qÞðb1$I 0Þ
This trading rate then needs to ensure that it satisfies our boundary condi-
tions (i.e., user specified maximum and/or minimum rates, or the minimum
rate required to ensure completion of the order). That is written mathemat-
ically as:

a�
t ¼ minðmaxðLB;atÞ;UBÞ

Compared to a constant trading rate, the AIM adaptation tactic will incur a
lower cost on average but will have increased risk exposure. The cost dis-
tribution of the AIM tactic is shown in Fig. 13.3B. Notice that its expected
cost C3 is lower than that of the constant rate C2, but it does have higher bad
risk exposure.

Compared to the target cost strategy the AIM tactic will trade at a slightly
slower rate. Notice that the optimal AIM strategy is 1/3 of the optimal tar-
geted cost solution. This results in a slightly lower cost than the targeted
tactic and an increased potential for better prices if the favorable trend con-
tinues. But it is also associated with increased risk exposure and a potential
for higher costs in times of adverse price movement. Fig. 13.3C shows the
cost distribution of the targeted cost tactic to the AIM tactic. Notice that the
AIM cost C3 is lower than the targeted cost C2 but also has increased risk
exposure as shown with the fatter tail on the right-hand side (bad risk).

Passive-in-the-Money
The Passive-in-the-Money (PIM) adaptation tactic is a price based scaling
tactic intended to limit the potential losses and high costs in times of adverse
price movement. It allows investors to better participate in gains to share in
gains in times of favorable price movement.

The PIM tactic was originally designed with the ArrowePratt constant rela-
tive risk aversion (CRRA) formulation (see Pratt, 1964 and Arrow, 1971) in
mind. But after conversations with many investors we revised this adapta-
tion tactic to be the mirror image of the AIM tactic. For example, investors
may decelerate trading prices are favorable because they believe the prices
are going to continue to improve, and by trading slower they will further
reduce market impact and continue to realize better prices. PIM will trade
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faster in times of adverse movement because investors believe that the
adverse trend will continue to worsen. Thus, we would rather pay higher
market impact cost to avoid the most adverse prices and minimize the
“bad” fat tail events. In other words, the PIM adaptation tactics minimizes
potential bad outliers and increases our chances of achieving the good
outliers.

The PIM tactic is found by maximizing the negative of the AIM adaptation
tactic. Mathematically this formulated as:

Max L ¼ � E0ðCostÞ � EtðCostÞ
EtðTRÞ

or alternatively as the following minimization problem,

Min L ¼ EtðCostÞ � E0ðCostÞ
EtðTRÞ

In this case E0(Cost) is the original cost from the BES in step 2 and Et(TR) is
the price uncertainty for the remainder of the order. If the investor has an
alpha expectation this additional cost will need to be incorporated into this
expression.

For the trading rate strategy (without an alpha term) the PIM adaptation tac-
tic objective function is:

Min L ¼ ðKt þ ð1� qÞðb1$I 0$atÞÞ � C�

s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� qÞ$ X

ADV
$
1
at

r

$P0

Where C* is the original expected cost, Kt is the unavoidable cost at time t,
and the denominator is the price uncertainty for the remainder of the order.

Solving for at we get,

at ¼ Kt � C�

3$ð1� qÞðb1$I 0Þ
Incorporation of our boundary conditions yields,

a�
t ¼ minðmaxðLB;atÞ;UBÞ

The optimal PIM solution is like the optimal AIM solution. The only differ-
ence is in the numerator where the PIM numerator is the negative of the
AIM numerator. This ensures a mirror image between the two adaptation
tactics. As prices become more favorable the PIM tactic will slow down
and as prices become less favorable the PIM tactic will speed up. This re-
sults in a cost distribution with a higher mean cost than the AIM and
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targeted cost tactic, but with a much lower probability of incurring higher
costs due to persistence of adverse price movement. The PIM tactic protects
against the fat tail and “bad” risk events and provides increased opportunity
to achieve better prices in times of favorable trends. But this comes with a
slightly higher cost. Unfortunately, in finance there is no free lunch. This is
shown in Fig. 13.3D. Notice that the expected cost for PIM C4 is higher than
then constant rate C1. But it is associated with less bad risk and a much
higher possibility of great.

COMPARISON ACROSS ADAPTATION TACTICS
As a strategy deviates from the initial best execution strategy due to the
specification of adaptation tactic it results in a new expected cost distribu-
tion. The targeted cost and AIM adaptation tactics result in a skewed distri-
bution with a lower expected trading cost but with more “bad” risk. These
strategies will take advantage of better market prices by trading at a quicker
rate which results in a lower expected trading cost but also trades at a slower
rate when prices are less favorable which increases the chances of incurring
costly outliers.

Comparison of the targeted tactic (Eq. 8.36) to the AIM tactic (Eq. 8.38)
shows that the AIM tactic trading rate is 1/3 of the targeted cost rate.
This results in a lower expected cost for the AIM strategy since it allows
the fund to participate with favorable price trends for a longer period but
since it trades slower it will also exposure the order to more market risk
which will result in a higher potential for costly outliers when adverse price
trends persist.

One strategy that is being used by investors to overcome the “bad” risk
issue associated with the targeted cost or AIM adaptation tactic is to set
the lower bound or minimum trading rate equal to the original trading
rate from step 2: specify trading goal. This then allows investors to take
advantage of the better prices when they arise and it will not cause the
fund to incur incremental market risk over the constant rate since it will
trade no slower than the original trading rate.

The PIM adaptation tactic (Eq. 8.40) also results in a skewed distribution,
but unlike target and AIM, PIM protects investors from “bad” risk by accel-
erating trading when the adverse momentum begins. The goal of PIM is to
complete the order before prices can become too expensive to trade. An
advantage of PIM is that it increases “good” risk exposure since it trades
slower when there are favorable market prices. But this results in a slightly
higher cost on average - but with bad risk protection.
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Fig. 13.4 provides an example of the difference between the three tactics for
a buy order. At the current price the target rate is trading at 30% and both
AIM and PIM are at 10%. As prices decline, the target and AIM tactics in-
crease and the PIM tactic decreases. Notice that the target tactic increases
three times as quick (as we determined mathematically). The PIM tactic
will decrease down to its minimum rate (which is specified by investor)
and in this example, is 5%. As prices increase, both the target and AIM tac-
tics decrease and will continue to decrease down to the investor’s specified
minimum rate. Since the AIM tactic (10%) is lower than the target rate (30%)
it will reach its minimum rate quicker than the target rate. But notice how the
PIM tactic trading rate increases as prices increase. It is the exact mirror im-
age to the AIM tactic.

MODIFIED ADAPTATION TACTICS
Many investors are proponents of specifying adaptation tactics based only
on the current market prices and arrival price or based on current market
prices plus remaining market impact cost and arrival price. In this type of
scenario, the algorithm ignores what has happened in the past, and only
considers the current point in time and expected future prices.

While this type of tactic is preferred by some market participants, we are not
proponents of this type of tactic. If an investor is not concerned with what
happened in the past while they are trading they should not be concerned
with what happened in the past after trading is completed. Otherwise,
they exhibit inconsistent behavior. If an investor wants to trade a certain
way halfway through the order that is different than at the beginning of
the order, the chances are that they could have a defined a different initial
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strategy and adaptation tactic at the beginning of trading and would have
realized even better results. Consistency and preplanning is catamount
when it comes to algorithmic trading.

How Often Should we Reoptimization Our Tactic?
There are many different theories for when and why an investor should
reoptimize their trading rates. Some of these are quite appropriate and
some are quite silly. Suffice it to say, investors should not treat trading al-
gorithms like video games and make changes only for the sake of making
changes. Revisions to strategies should be made when appropriate from the
perspective of the investment objective as well as to disguise trading inten-
tions. Of course, revisions could always be made because of the arrival of
new information that was either not known at the beginning of trading or is
different than what was believed at the beginning of trading.

There are four techniques that are actively being used by algorithms to
revise trading strategies. These are continuous, trade-based, time-period,
and z-score. First, some algorithms continuously revise their trading rate.
With today’s computer power some algorithms are continuously revising
rates based on what is observed in the market. Second, some algorithms
revise their trading rate after each child order is executed or canceled. Third,
some trading algorithms will revise their trading rate based on a defined
time period such as every 30 s (or faster or slower). However, some of
the more sophisticated algorithms employing higher levels of sophistication
and antigame logic will revise their trading algorithms based on a “z-score”
criteria. This is as follows:

The z-score is measured as the difference between the expected cost at the
current point in time and the original expected cost divided by the remain-
ing timing risk of the order. That is:

EtðZÞ ¼ E0ðCostÞ � EtðCostÞ
EtðTRÞ

This formulation of Et(Z)will be negative if we are underperforming our ex-
pected cost and positive if we are outperforming our expected cost. Negative
is bad and positive is good.

The algorithm may determine to only revise the trading rate if the Z-score is
higher or lower than a specified value such as �1 or � 1/2 . For example,
only revise the trading rate if the projected z-score at time t is greater than
or less than a trader specified criteria. The z-score specifies the number of
standard deviations the expected finishing cost will be from the original
cost. Quite often in statistics we use a Z-score within �1 to signify expected
performance, but in trading, many investors prefer a more conservative
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measure of z-score and use � 1/2 as the reference value to reoptimize. Addi-
tionally, some investors elect to reoptimize only if the projected z-score is
less than some value such as z < �1 or z < -1/2 indicating less than desirable
performance. Additionally, and what is often most important for many inves-
tors, the z-score reoptimization logic makes it more difficult to uncover what
the algorithm is doing because it is not updating continuously, after each
trade, or based on a specified period of time.

An example of the z-score reoptimization criteria for a buy order is shown
in Fig. 13.5. At the current price of $30.00 the algorithm is transacting with a
trading rate of 20%. The algorithm will continue to trade at this rate while
price levels are between $29.92 and $30.08. If prices fall below $29.92
then the algorithm will increase to a trading rate of 25% and continue at
this rate if prices are between $29.85 and $30.00. Notice that this logic
does not return the trading algorithm to the original rate of 20% when prices
move back above $29.92. If prices increase above $30.08 the trading rate
will decrease to 15% and remain at this level while prices are between
$30.00 and $30.15. Again, notice that the algorithm does not return to the
original rate of 20% after the prices fall back below $30.08. It is important
to point out in this example that at a market price of $30.00 it is possible for
the algorithm to be transacting at three different trading rates: 15%, 20%, or
25%. This makes it increasingly difficult for any trader to decipher the inten-
tions of the trading algorithm or goal of the trader.

The exact rate in use by the algorithm will be determined in part by current
and forecasted market conditions, realized and projected trading costs, and
the investor’s z-score criteria. All of which makes it increasingly difficult to
uncover the investor’s execution strategy.
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Chapter14
Portfolio Algorithms and Trade

Schedule Optimization

INTRODUCTION
Portfolio algorithms and multiperiod trade schedule optimization have
gained momentum in the financial community due to the increase in pro-
gram and algorithmic trading. By understanding how portfolio trading
decisions influence returns, traders will be better prepared to make deci-
sions consistent with the overall investment objectives of the fund. Un-
fortunately, traditional optimization techniques are not adequate for
portfolio needs due to the nonlinearity of the price impact function, the
large number of decision variables, and the time it takes to calculate
the answer.

Each time a trader is given a trade list to execute (e.g., basket, program, or
portfolio) they face an inherent dilemma. Trading too quickly will result in a
greater price impact due to liquidity demands and information leakage, but
trading too slowly will result in too much risk that could lead to even higher
costs in times of adverse price movement (“trader’s dilemma”).

To address these conflicting expressions, traders determine a trade schedule
(“slicing strategy”) that balances the tradeoff between price impact and risk
based on a specified level of risk aversion. The appropriate computational
technique to solve this problem for a portfolio is multiperiod trade schedule
optimization. But unlike the portfolio manager who usually has ample time
to run sophisticated optimization algorithms and perform thorough sensi-
tivity analysis, a timely solution for the trader is mandatory especially
considering that they are often given the order just before the market opens
or during the trading day. Most currently available optimization routines
take too much time to solve the trader’s dilemma to be useful for investors.
These packages can take several minutes, hours, or more, especially if the
problem involves thousands of stocks over a long trading horizon. Traders
require real-time solutions in seconds or less.

Algorithmic Trading Methods, Second Edition. https://doi.org/10.1016/B978-0-12-815630-8.00014-4
Copyright © 2021 Elsevier Inc. All rights reserved. 349

https://doi.org/10.1016/B978-0-12-815630-8.00014-4


Trade schedule optimization to minimize total trading costs has been previ-
ously studied. For example, Bertsimas & Lo (1998) provided an approach
to minimize price impact in the presence of expected future information.
The goal is to minimize total cost arising from price impact and price drift.
Almgren & Chriss (1999, 2000) expanded on the idea of trade schedule
optimization by incorporating a risk-aversion parameter and balancing
two conflicting terms (price impact and risk) based on the investor’s risk
appetite. Their proposed market impact formulation contains the right shape
and market impact properties (e.g., convex shape with dollar value), but
their objective function results in a path-dependent stochastic process
with a difficult and slow solution.

Malamut (2002, 2003) devised an approximated quadratic programming
(QP) formulation and provided insight into parametric trade schedules to
solve a nonlinear impact formulation. Kissell, Glantz & Malamut (2004)
incorporated a drift term into the objective functions and offered alternative
goals to mean-variance optimization such as maximizing the probability of
outperforming a specified cost (e.g., maximize the Sharpe ratio of the trade).
Obizhaeva & Wang (2005) studied an intertemporal (not static) trade
sequencing problem. They sought to solve a path-dependent problem like
Almgren & Chriss (2000) by understanding the half-life of a trade (e.g.,
the time for temporary impact to dissipate). Their techniques, however,
are only presented for a single stock order.

In the financial literature, the mean-variance portfolio optimization of Mar-
kowitz (1952) clearly stands out as one of the more important quantitative
approaches. The technique is widely used by portfolio managers and is an
effective tool to manage risk and improve returns. However, mean-variance
optimization is mostly used in the context of a one-period investment
model. Li and Ng (2000) derive a solution to the multiperiod mean-
variance optimization problem where the allocation decision is reviewed
in every period. Therefore the proposed solution is dynamic since the deci-
sion to invest is reviewed after each period’s results are known.

In this chapter, we present a multiperiod trade schedule optimization
approach for portfolio optimizers (Malamut, 2002). We offer four ap-
proaches that can be used to solve the trader’s dilemma in an amount of
time that can be useful for traders. These approaches expand on techniques
presented in Optimal Trading Strategies (2003) and introduce real-time
adaptation techniques to determine when it is appropriate to take advan-
tage of market conditions given the overall risk composition of the trade
basket.

350 CHAPTER 14 Portfolio Algorithms and Trade Schedule Optimization



TRADER’S DILEMMA
A typical trading situation is as follows: traders are provided with a basket
of stock (e.g., program, trade list, portfolio, etc.) to transact in the market.
The basket may be one sided (e.g., all buys or all sells) or two sided (e.g.,
both buys and sells). Traders are then tasked with determining the most
appropriate way to transact the order over a specified period of time. This
is accomplished by balancing the tradeoff between cost and risk based on
a user-specified level of risk aversion. Mathematically, this is stated as
follows:

Min CostðxkÞ þ l$RiskðxkÞ
where l represents trader-specified level of risk aversion and xk is used to
denote the discrete trade schedule representing exactly how the shares are
to be transacted in each period for each stock.

Variables

X ¼ shares to trade

Yt ¼ shares executed at time t

SideðiÞ ¼
�þ1 if buy order

�1 if sell order

ADV ¼ average daily volume

s ¼ annualized volatility

C ¼ covariance matrix; scaled for the length of the trading period in ð$=ShareÞ2

xij ¼ shares of stock i to trade in period t

rij ¼ residual shares of stock i at beginning of period t

rij ¼
X
n

k¼ j

xik

vit ¼ volume for stock i in period t

Pi0 ¼ arrival price

Pit ¼ market price in period t

Pit ¼ average execution price at time t
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m ¼ number of stocks in the portfolio

n ¼ number of trading periods during the horizon

d ¼ number of trading periods per day

TRANSACTION COST EQUATIONS
This section describes the trading cost equations that will be used to solve
the portfolio trader’s dilemma. When performing portfolio optimization, it
is most beneficial to express the trading strategy in terms of a trade schedule
to allow us to most effectively manage total portfolio risk and express costs
in total dollars to allow us to easily sum costs across stocks. Additional de-
tails on the formulations used here are provided in the chapter Advanced
Algorithmic Trading Techniques.

For a portfolio of m-stocks that are to be executed over n-trading periods we
have:

The trade schedule x as a m� n matrix as follows:

x ¼

0

B

B

B

B

@
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C

A

The residual schedule r as a m� n matrix as follows:

r ¼

0

B

B

B

B
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where rij ¼ P
n

k¼ j
xik.

For simplicity of notation, we define xk and rk to be the column vectors of the
trade and residual matrices, respectively, as follows:

xk ¼

0

B

B

B
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C
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A
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The covariance matrix C is a m� n matrix as follows:

C ¼

0
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where C is scaled for the length of the trading horizon and expressed in terms
of ($/share)2, cij is the covariance between stock i and stock j, and cii is the
variance of stock i.

Market Impact

I�$i ¼ a1$

�

Xi

ADVi

�a2

$sa3
i $10

�4$Pi0$Xi

MI$ðxkÞ ¼
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b1$I�i $x
2
it

Xi$vit

!
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This formulation of market impact follows from the trade schedule formu-
lation with parameter a4¼1. This is required to best manage the risk of the
trade list during implementation of the investment decision. These parame-
ters are shown in Table 14.1.

Price Appreciation

PA$ðxkÞ ¼
X
n

i¼ 1

X
m

t¼ 1

xij$Dp
�
i $t

where Dpi is the per period price appreciation term expressed in $/share
adjusted for the side of the order. For example, if the price is expected to in-
crease $0.05/share per period and we are selling shares the price appreciation
term is:

Dp�i ¼ sideðiÞ$Dpi ¼ �1$$0:05=share ¼ �$0:05=share

Table 14.1 Market Impact ParametersdTrade Schedule Strategy.

Data Sample a1 a2 a3 a4 b1

All Data 656 0.48 0.45 1 0.90

Large Cap 707 0.59 0.46 1 0.90

Small Cap 665 0.42 0.47 1 0.90
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Timing Risk

TRðrkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

k¼ 1

r0kCrk

s

where C is the trading risk covariance matrix expressed in ($/share)2, and is
scaled for the length of the trading interval, and rk is the residual vector of
unexecuted shares at the beginning of period k.

One-Sided Optimization Problem
It is important to note that our I-Star market impact equation requires that
the trade size X be positive, e.g., Xi > 0 for all stocks. This creates a diffi-
culty when optimizing a two-sided portfolio since we need to have a way to
incorporate the negative market relationship between buy and sell orders.
Similar to how we adjusted the price appreciation term by the side of the or-
der, we adjust the covariance term by the side of each order and thereby
convert the portfolio optimization problem to a one-sided optimization prob-
lem. That is:

c�ij ¼ sideðiÞ$sideðjÞ$cij
Then our transaction cost equations will properly account for the sided
covariance across stocks. Notice in this calculation that the variance of a
stock will be positive, the covariance between two stocks on the same
side (e.g., both buys or both sells) will be equal to the original covariance
term, and the covariance between two stocks with opposite side orders (e.g.,
one buy and one sell) will be the negative of the original covariance term.

OPTIMIZATION FORMULATION
Using the expressions above the complete portfolio trader’s dilemma trans-
lates to:

Min
x

(

X
m

i¼ 1

 

X
n
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b1$I�i $x
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Subject to constraints:

(i)
P
n

t¼ 1
xit ¼ Xi Completion

(ii) xit � 0 No Short Sales

(iii) rit � ritþ1 � 0 Shrinking Portfolio

(iv) rit ¼ P
n

k¼ t
xik Residual Schedule

(v) xit ¼ rit � ritþ1 Trade Schedule

(vi) a�i;min � xit
vit
� a�i;min Trade Rate Bounds

(vii) x�i;min � xit � x�i;max Trade Size Bounds

(viii) r�i;min � rit � r�i;max Residual Bounds

(ix)
LB � P

m

i¼ 1

P
k

j¼ 1
ðsideðiÞ $xij $pikÞ � UB

Self-Financing

(x) LB � �sideðiÞ $rijpij
� � UB Risk Management

Constraint Description
Investors may include all or some of the constraints above. These constraints
are fund specific, can be omitted, and are deemed unnecessary by the trader.
These constraints are described as follows:

(i) Completion: ensures that the optimization solution will execute all
shares in all orders within the defined trading horizon.

(ii) No short sales: ensures that the side of the order will not change. For
example, the optimization solution will only buy shares for a buy order
and sell shares for a sell order. Without this constraint, it is possible
that the optimization may overbuy or oversell during the day and
then must offset the newly acquired position.

(iii) Shrinking portfolio: ensures that the size of the order keeps
decreasing. For example, if the order is to buy 100,000 shares the posi-
tions will always be decreasing toward zero and will never increase.
Without this constraint the optimization solution may determine that
it would be best first to sell 25,000 shares so that the order increases
to 125,000 shares. While this type of strategy may be the best way to
manage overall portfolio risk it may not be an acceptable solution for
the investor. For example, it exposes the investor to short-term risk if
the stock is halted after the position size increases to 125,000 shares.

(iv) Residual schedule: defines the residual share quantity in each period
in terms of unexecuted shares at that point in time. Used if the decision
variable is the trade share amount.
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(v) Trade schedule: defines the shares to trade in terms of the residual
shares. Used if the decision variable is the residual trade vector.

(vi) Trade rate bounds: the defined maximum and minimum trading
rates. For example, investors may wish to trade at least 1% of the total
market volume in each period but no more than say 25% of total mar-
ket volume in each period. These constraints are most often defined in
terms of percentage of volume rate so may need to be converted to the
trade rate definition.

(vii) Trade size bounds: defines the maximum and/or minimum number of
shares to execute in each period through completion of the order. For
example, investors may wish to trade at least 100 shares in each period
and no more than say 25,000 shares.

(viii) Residual size bounds: defines the maximum and/or minimum posi-
tion sizes (e.g., unexecuted shares) at different points in time. The
investor may wish to give the optimizer some leeway on the solution
but within a user-specified tolerance band. For example, the investor
may require one-half of the order to be executed within the first 2 h
of the trading day.

The last two constraints are often stated as cash-balancing constraints.
However, the term cash balancing is a very vague term in the industry and
has two different meanings. These cash-balancing constraints are “self-
financing” and “risk management.”

(ix) Self-financing: The self-financing constraint is used by investors who
are looking to have their sell orders finance their buy orders. This
constraint manages the cash transactions throughout the day. For
example, if this constraint is positive it indicates that they have bought
more than they have sold, and therefore will need to pay incremental
dollars. If this constraint is negative it indicates that they will have
sold more than they have purchased, and will have incremental dollars
that they will receive. Investors will often place tolerance bands on the
cash position so that they will not have to provide too much additional
cash for the purchases or receive too much cash back from sells. The
self-financing constraint manages cash-flow from the perspective of
shares already traded. It is often intended to keep the fund from having
to raise cash at the end of the day in cases where the buy dollar amount
was higher than the sell dollar amount.

(x) Risk management: The risk-management constraint is used by inves-
tors to manage risk throughout the trading day. Here risk is managed by
the net value of the unexecuted shares. These investors believe that as
long as the value of the remaining shares to be purchased is equal to the
value of shares to be sold the portfolio is hedged from market
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movement. This constraint, however, does not incorporate the sensi-
tivity to the market. For example, if the investor is buying a list of
high beta technology stocks and selling a list of low beta consumer sta-
ples they may not be hedged from market movement. If the market goes
up the prices of the technology stocks are likely to go up more than the
consumer staples stocks, thus causing the investor to provide additional
cash at the end of the day and incur a higher trading cost. The risk-
management constraint manages cash-flow from the perspective of
unexecuted shares. Cash balancing for risk management was originally
implemented when investors did not have full confidence in the under-
lying intraday covariance model.

Objective Function Difficulty
The formulation of the objective function above presents many difficulties.
First, the problem is not linear or quadratic, thus creating increased
complexity for the optimization routine. Second, the timing risk component
is represented as a square root function as opposed to a squared term in a QP
optimization problem. For example, portfolio construction optimization
models often express risk as a variance term (risk squared) and can be
directly incorporated into quadratic optimizations. Finally, there are n*m de-
cision variables in our full formulationdone decision variable for each stock
in each trading period. In portfolio construction there are m decision
variableseone for each stock. Our portfolio optimization requires m times
more solution variables.

Unfortunately, the time to solve these optimization algorithms increases at
an exponential rate with the number of variables. For a 500-stock portfolio
executed over 26 trading intervals (e.g., 15-min intervals) this results in
13,000 decision variables and takes much more than 26 times longer to
solve. Combined with the constraints above, it makes solving this optimiza-
tion extremely slow.

Investors require accurate solutions within a short enough timeframe to be
useful for trading. By “short enough” we mean a matter of seconds or mi-
nutes as opposed to minutes or hours.

Fortunately, there are accurate transformations and approximations that
allow us to solve the trader’s dilemma in a reasonable amount of time.
These techniques are:

n Quadratic optimization approach
n Trade schedule exponential
n Residual schedule exponential
n Trade rate optimization
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Optimization Objective Function Simplification
The full portfolio optimization objective function includes permanent mar-
ket impact cost. Because this cost is not dependent upon the specified
trading strategy we can omit it from the objective function without changing
the optimal solution. However, permanent impact needs to be added back
into the estimated cost to provide investors with the full portfolio trading
cost estimate.

Additionally, to simplify future calculations, we exclude the price appreci-
ation term from the cost function. We only include market impact cost.

PORTFOLIO OPTIMIZATION TECHNIQUES
Quadratic Programming Approach
The trader’s dilemma can be solved using a quadratic optimization (QP) by
making a couple of changes to the formulation. First, formulate the problem
in terms of the residual trade schedule. Second, use the variance expression
for risk, which does not include the square root function instead of the stan-
dard deviation expression of risk, which includes the square root expres-
sion. Third, use a variance aversion parameter in place of the traditional
risk-aversion parameter.

This will allow us to now solve the problem via a traditional quadratic opti-
mization. The only outstanding issue, however, is determining the exact so-
lution at the investors’ specified level of risk aversion. This can be solved as
follows. Recall that the risk-aversion parameter is equal to the negative
tangent of the efficient trading frontier (ETF) at the optimal trading strategy.
If we solve sets of our QP optimization and plot the ETF, i.e., market impact
as a function of risk using the square root function for all optimization re-
sults, we can determine the strategy on the ETF where the slope of the
tangent is equal to the negative of the investors’ risk aversion. This may
take several iterations but it is entirely feasible.

This is an entirely valid transformation since cost variance can be mapped to
cost risk and is consistent with Markowitz (1952) mean-variance optimiza-
tion. Markowitz actually presented an optimization using return and vari-
ance but then plotted the tradeoff using return and standard deviation.
Markowitz’s ETF shows the tradeoff between return and standard deviation
but is solved using return and variance. The biggest different here is that
traders are seeking an exact point on the frontier and in an amount of
time that will be useful for trading.
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The QP trade cost minimization is written in terms of the residual schedule
as follows:

Min
r

X
m

i¼ 1

X
n

t¼ 1

b1$I�i $ðrit � ritþ1Þ2
Xi$vit

þ l�$
X
n

k¼ 1

r0kCrk

Subject to:

ri1 ¼ Xi for all i

rinþ1 ¼ 0 for all i

0 � rit � rit þ 1 � x�i;max for all i; j

rij � 0 for all i; j

Notice that this formulation is written only in terms of the residual shares.
This is permissible since xij ¼ rij � rijþ1. Additionally, ri1 ¼ Xi is the
proper residual starting value and rinþ1 ¼ 0 is the terminal value to ensure
all shares are transacted by the end of trading and satisfy our completion
requirement. The last two constraints ensure the solution adheres to the
shrinking portfolio constraint and the minimum and maximum trade quantity
values. Finally, l� is the variance-aversion parameter and is different from
the risk-aversion parameter.

An inherent difficulty with the QP solution, however, is that there is no way
to map risk aversion to variance aversion, so the actual process may need
several iterations to determine the solution at the desired level of risk
aversion.

Another difficulty is that the formulated problem dramatically increases in
size as the number of stocks in the portfolio increases. This may diminish
the efficiency benefits of the QP approach as the trade list becomes too
large.

In matrix notation, the quadratic optimization is written as follows:

Min
er

1
2
$er0Qer

Subject to:

eA1er
0 ¼ eb1

eA2er
0 � eb2

erij � 0
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where er ¼ m$ðn þ1Þ � 1, Q ¼ m$ðn þ1Þ � m$ðn þ1Þ,
eA1 ¼ 2m � m$ðn þ1Þ, eb1 ¼ 2m � 1, eA2 ¼ 2m$ðn þ1Þ � m$ðn þ1Þ,
and eb2 ¼ 2m$ðn þ1Þ � 1. The derivation of these matrices is provided
in the appendix to this chapter.

This representation of the trader’s dilemma above provides many advan-
tages. First, there are many well-known optimization algorithms suited to
solve a QP minimization problem. Second, this formulation allows us to
take complete advantage of diversification and hedging opportunities.

The disadvantages of this formulation are that the risk term in the objective
function is expressed in terms of variance and may require several iterations
to determine the trade schedule corresponding to the investor’s level of risk
aversion. For large trade lists this problem can be quite resource taxing.
Malamut (2002) provided an adjustment to the QP model to directly convert
the standard deviation risk-aversion parameter to the variance risk-aversion
parameter, which can be used to further simplify the risk aversion/variance
aversion issue.

Trade Schedule Exponential
The trade schedule exponential approach parameterizes the trade schedule
based on an exponential decay function with parameter qi. It is a nonlinear
optimization routine that uses the square root function for our risk
expression.

The number of stocks to transact in a period is determined as follows:

xij ¼ Xi$
e�jqi

Pn
k¼1e

�kqi

The optimization formulation for the trade schedule exponential approach is
a nonlinear optimization formulation:

Min
x

X
m
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X
n
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Xi$vit
þ l$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

k¼ 1

r0kCrk

s

Subject to:

xij ¼ Xi$
e�jqi

Pn
k¼1e

�kqi
for all i; j

rij ¼
X
n

k¼ j

xik for all i; j

LBi � qi � UBi for all i; j
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Expressing the trade schedule as a parametric exponential formulation pro-
vides many benefits. First, there is only one parameter to estimate for each
stock regardless of the number of specified trading periods and trading days.
For example, an m-stock portfolio executed over n-trading horizons has only
m parameters to determine regardless of the trading horizon, whereas the
complete problem and QP optimization has n� m decision variables. Sec-
ond, our formulation of the trade schedule guarantees completion of the or-
der. Third, since e�jqi > 0 for all j we have xij > 0 for all periods and are
ensured to adhere to the shrinking portfolio constraint. Most essential, how-
ever, is that since the trade schedule is expressed in terms of a continuous
exponential function the analytical gradient and Hessian can be easily
computed. This dramatically increases the computational efficiency of a
nonlinear optimization algorithm. Finally, it incorporates the investors exact
risk-aversion parameter.

A limitation of the exponential trade schedule, however, is that it does not
allow as much freedom to take advantage of natural hedging and diversifi-
cation as the exact nonlinear programming (NLP) and QP approaches
described above. The lower and upper bounds are included on the trading
schedule parameter to ensure the order is traded within a user-specified rate.

Residual Schedule Exponential
The residual schedule exponential is a technique that parameterizes the re-
sidual schedule in terms of an exponential decay function. It is a nonlinear
optimization routine and uses the square root function for the risk term.

The residual number of shares in each period is determined by the
following:

rij ¼ Xi$e
�jui

This formulation is a decreasing function so it will always adhere to our
decreasing portfolio constraint. But since it is always positive, e.g., rij >
0, we need to incorporate some terminal value to force the order to complete
(within some tolerance).

The optimization formulation for the trade schedule exponential is:

Min
x
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Subject to:

rij ¼ Xi$e
�jui for all i; j

ri1 ¼ Xi for all i; j

rinþ1 � 100 for all i; j

xij ¼ rij � rijþ1 for all i; j

LBi �ui � UBi for all i; j

Expressing the trade schedule as a parametric exponential formulation pro-
vides many benefits.

First, there is only one parameter to estimate for each stock regardless of the
number of specified trading periods and trading days. For example, an
m-stock portfolio executed over n-trading horizons has only m parameters
to determine regardless of the trading horizon, whereas the complete prob-
lem and QP optimization each have decision variables. Second, since the
equation holds for all stocks we are ensured of completion of the order.
Third, since e�jui > 0 for all j we guarantee we adhere to our shrinking port-
folio constraint. Most essential, however, is that since the residual schedule
is expressed in terms of a continuous exponential function the analytical
gradient and Hessian can be easily computed. This dramatically increases
the computational efficiency.

A limitation of the residual trade schedule exponential, similar to the expo-
nential trade schedule, is that it does not allow as much freedom to take
advantage of natural hedging and diversification as the exact NLP and
QP approaches above. The lower and upper bounds are included on the
trading schedule parameter to ensure the order is traded within a user-
specified rate.

Trading Rate Parameter
The trade strategy can also be expressed in terms of a trading rate parameter
a. Here the number of shares to transact is equal to a specified percentage of
market volume excluding the order shares. The process is best explained as
follows. For a specified trading rate a, the expected time to complete the or-
der (expressed as a percentage of a trading day) is:

t ¼ X

ADV
$
1
a
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If the trading day is segmented into n trading periods then the order will be
completed in T periods where:

T ¼ t$n ¼ X

ADV
$
1
a
$n ðrounded up to the nearest integerÞ

For example, if the order size X
ADV ¼ 10% and the trading rate a ¼ 10% the

order will complete in a day. If the trading rate is a ¼ 20% the order will
complete in one-half day, and if the trading rate is a ¼ 5% the order will
complete in 2 days.

Market Impact Expression
For a constant trading rate the temporary market impact cost for a single
stock is:

MIðaÞ ¼ b1$I
�a

For a basket of stock the market impact cost is:

MIðaiÞ ¼
X
m

i¼ 1

b1$I
�
i ai

Timing Risk Expression
The timing risk for a portfolio cannot be expressed as a continuous function
in terms of the trading rate parameter because at some time the residual
shares would fall below zero. But we can overcome this problem by approx-
imating the residual with the following continuous exponential function:

rij ¼ Xi$e
�jgi

where

gi ¼ 2:74$T�1:22 þ 0:01

This representation of residuals results in approximately the same risk that
is computed using the trade schedule strategy.

The trade rate optimization problem is formulated as follows:

Min
X
m

i¼ 1

b1 $ I
�
i ai þ l

ffiffiffiffiffiffiffiffiffi

rtCr
p

Subject to:

rij ¼ Xi$e
�jgi for all i; j

gi ¼ 2:74$T�1:22 þ 0:01 for all i; j
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T ¼ X

ADV

1
a
$n for all i; j

LBi �ai � UBi for all i; j

The LB needs to be set at a value that will ensure the order will be completed
by the investors’ specified end time.

Representation of the trade schedule in terms of trading rate provides
many benefits. There is only one parameter per stock. The market impact
cost and timing risk expressions are greatly simplified. Completion of the
order and the shrinking portfolio constraint are guaranteed. And since the
gradient and Hessian are easily computable it provides efficiency and
speed for nonlinear optimization.

A limitation of the trade rate formulation is that it does not provide as much
freedom to take complete advantage of risk reduction opportunities as the
approaches above. But it does provide guidelines to adapt to changing
liquidity conditions (e.g., transact more shares in times of higher market
volumes and transact fewer shares in times of less market volume)
throughout the trade periods, which is not provided from any of the previ-
ously described techniques. And as we show below, it provides the quickest
solutions even for large trade lists.

Comparison of Optimization Techniques
To compare the performance of the different optimization techniques a
simulation experiment to measure solution time and accuracy is conducted.
The experiment is as follows:

Sample universe. Our sample universe was the SP500 index.

Number stocks. We constructed portfolios that ranged in size from 10, 25,
50, 100, ., 450, and 500 stocks.

Order size. We randomly defined order sizes from 0% to 25% average daily
volume.

Volatility. We used actual stock volatility from the sample.

Covariance matrix. We constructed our covariance matrix using a correla-
tion between stocks that was equal to the average stock sector-to-sector cor-
relation. For example, if the average correlation between a technology and
utility stock was rho ¼ 0.15 we used a correlation of 0.15 to compute the
covariance between a technology stock and a utility stock along with their
actual volatility.
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Number of simulations. We performed 20 simulations for each portfolio for
each optimization technique. Ten simulations were performed for a one-
sided portfolio, e.g., cash investment, five simulations were performed
using a two-sided portfolio with equal weights in each side, and five simu-
lations were performed using a 130e30 two-sided portfolio, that is, the dol-
lar weight on one side was 130% of the total and the weights in the other
side accounted for �30% of the dollar value.

Performance measure. We recorded the time to solve each portfolio with
each optimization technique and measured the accuracy of each technique
by comparing the resulting trade schedule to the true trade schedule deter-
mined by solving the portfolio using the nonlinear optimization routine that
solved the exact objective formulation (Eq. 9.5). Advantages and disadvan-
tages of each technique are shown in Table 14.2.

Risk aversion: The risk-aversion parameters were randomly selected from
the following values: l ¼ 0:3; 1; 2.

Trading days: We broke the day into 13 intervals of each volume.

In total, our simulation experiment took several days to run. The optimiza-
tions were run using a 64-bit PC, with an Intel i7 processor, 2.6 GHz, and
with 32 GB of RAM. Since the actual optimization times are also dependent
upon PC, processor, and memory, analysts are encouraged to set up these
experiments and analyze solution time and accuracy for the approach
described above incorporating the trade list characteristics most common
for their fund (e.g., small cap index, global index, growth, value, momentum,
one-sided, two-sided equal, 130e30, etc.).

How Long did it Take to Solve the Portfolio Objective
Problem?
Fig. 14.1 plots the log of the average time in seconds for each optimization
routine for each portfolio size. As expected, the nonlinear optimization
routine, which solved for the square root risk term, and a decision variable
for each stock and each period were the slowest but did provide us with
the exact trade schedule to the problem. The quadratic optimization tech-
nique, which provided exact shares to trade in each period but solved for
the variance of risk, was the next slowest. This technique, however, provided
reasonable solution times for portfolio sizes up to about 100 stocks (analysts
need to determine what is considered a reasonable solution time for their
needs). A difficulty with the QP approach is that analysts need to determine
the proper variance-aversion parameter from the investors’ specified risk-
aversion parameter. So, this mapping could require several runs of the prob-
lem. The trade schedule exponential and residual schedule exponential
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Table 14.2 Comparison of Optimization Techniques.

Optimization Technique Advantages Disadvantages

Nonlinear Optimization Determines Exact Solution to the
Exact Problem.
Takes full advantage of
diversification and hedging.

Takes too long to solve to be useful
to trades. Many Parametersdone
for each stock and period.

Quadratic Optimization Provides most accurate trade
schedule.
Takes full advantage of
diversification and hedging.

Many Parametersdone for each
stock and each period.
Slow solution for larger trade lists.
Could require multiple iterations.

Trade Schedule
Exponential

Very fast optimization solution.
Few Parametersdone per stock.
Takes very good advantage of
diversification and hedging. Very
accurate model.

Does not allow full freedom in
specifying trade schedule.
Trade schedule is forced to follow
exponential decay.

Residual Schedule
Exponential

Very fast optimization solution.
Few Parametersdone per stock.
Takes very good advantage of
diversification and hedging. Very
accurate model.

Does not allow full freedom in
specifying trade schedule. Forces a
front-loaded trade schedule.

Trade Rate Quickest optimization solution.
Adapts to changing market
conditions in real time.
Few Parametersdone per stock.

Does not take full advantage of
diversification and hedging.
Requires approximation of residual
risk function. Least accurate of the
methods.
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techniques provided a large improvement in solution time over the quadratic
optimizer. The fastest solution was for the trade rate technique. To show the
effect of the number of names in the portfolio on solution time the NLP opti-
mizer took 55 min to solve a 500-stock portfolio. The quadratic optimizer
(QP) provided dramatic improvement over the nonlinear approach and
only took 4.4 min to solve. But for a trader, even 4.4 min may be too long
especially if they desire to perform reoptimization during the day. The fastest
solutions for the 500-stock portfolio were the 14 s for the trade schedule
exponential solution, 10 s for the residual schedule exponential, and only
5 s for the trade rate technique. These are all dramatic time improvements
over the NLP and QP formulations.

How Accurate Was the Solution for Each Optimization
Technique?
Fig. 14.2 shows the accuracy of each approach. The quadric optimizer was
98% accurate. This was followed by the trade schedule exponential at 93%,
residual schedule exponential at 91%, and trade rate technique at 84%. Ac-
curacy was measured as one minus the error between the actual trade
schedule determined from the NLP solution and the trade schedule deter-
mined from each of our approaches.

This simulation experiment highlighted the inverse relationship between so-
lution time and accuracy. The quicker we solve, the less accurate the solu-
tion. In some circles this has become known as the “developer’s dilemma.”
Solving too fast may give an inaccurate result, but solving too slow may
miss the opportunity altogether.
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It appears that the exponential approaches provide the highest level of accu-
racy and the quickest solution times. Additionally, the exceptionally quick so-
lution of the trade rate technique could be used in conjunction with the
exponential approaches or quadratic optimization for full risk management
and quick solution times. Analysts need to determine the time available for
the initial optimization as well as real-time reoptimizations (described below)
to determine the best approach given time constraints Table 14.3.

PORTFOLIO ADAPTATION TACTICS
The optimization techniques provided above provide investors and algo-
rithms with appropriate initial trading strategies. These trade schedules
were determined based on expected market conditions and price movement.
Unfortunately, the only thing we are certain about with regard to markets is
that actual conditions will not be the same as expected conditions.

To adjust for changing conditions during the day, investors can utilize the
same adaptation tactics with a portfolio as they can with single stock trading
(see Chapter 8). In this section we discuss the Asset Information Model

Table 14.3 Optimization Solution Time (Seconds).

Number
Exact Nonlinear
Programming Quadratic

Trade
Exponential

Residual
Exponential Trade Rate

10 7.9 0.13 0.09 0.06 0.03

25 14.0 0.23 0.16 0.11 0.06

50 30.4 0.45 0.18 0.16 0.07

100 60.3 2.08 0.32 0.23 0.14

150 158.5 7.18 0.70 0.44 0.19

200 213.5 17.08 1.13 0.72 0.31
250 316.2 30.98 1.71 1.11 0.51

300 505.7 53.33 2.90 1.87 0.84

350 902.2 85.53 3.59 2.30 1.01

400 1542.9 163.39 5.13 3.41 1.70

450 2264.2 186.71 5.83 3.83 1.82

500 3345.1 262.87 8.35 5.78 3.20
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(AIM) and Project Information Model (PIM) tactics for portfolio trading
needs.

The AIM and PIM tactics are:

AIM : Max
Et½Cost� � E0½Cost�
Et½Timing Risk�

PIM : Max
E0½Cost� � Et½Cost�
Et½Timing Risk�

where

E0½Cost� ¼ C� ¼ original estimated costðincluding permanet impactÞ

Et½Cost� ¼ expected total cost at time tðincludes realized and unrealizedÞ

Et½Timing Risk� ¼ expected timing risk at time tðunexecuted shares onlyÞ
The original cost estimate is determined from the original optimization so-
lution. It includes temporary impact, permanent impact, and price appreci-
ation. Even if the optimization does not include the permanent impact
component (for optimization simplification) the permanent impact cost
needs to be added into the estimated cost. Permanent impact cost is a
true cost to investors, but since it will not influence the optimization solu-
tion it is often not included in the optimization formulation.

The time expectations for cost and timing risk are computed as follows:

Then our cost equations are:

Realized$ðCostðtÞÞ ¼
X

i

SideðiÞ$Yi$
�

Pij �Pi0

�

Momentum$ðCostðtÞÞ ¼
X

i

SideðiÞ$ðXi � YiÞ$ðPit �Pi0Þ

EtðMIÞ ¼
X
m

i¼ 1

X
n

j¼ t

b1$I�i $x
2
ij

Xi$vij
þ
X
m

i¼ 1

Yit

Yit þ Xi
$ð1� b1Þ$I�i

Notice that our market impact and timing risk equations only incorporate
trading activity from the current period through the end of the trading ho-
rizon. Additionally, since permanent market impact will be reflected in mar-
ket prices during trading we need to incorporate permanent impact cost in
the reoptimization adjusted for quantity of shares traded. This is shown as
the second expression on the right-hand side in above equation.
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Therefore, we have:

E0½Cost� ¼ C�

Et½Cost� ¼ Realized þMomentum$ðCostðtÞÞ þ Et½MI�

Description of AIM and PIM for Portfolio Trading
Portfolio adaptation tactics are illustrated in Fig. 14.3. In this scenario, the
portfolio manager is rebalancing the portfolio and investing additional
cash. This results in a trade list with an initially higher buy value than
sell value. Fig. 14.3A illustrates how the basket will be traded under ex-
pected market conditions. Here the buy order has an initial risk of
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$150K and the sell order has an initial risk of $100K. The manager opti-
mizes the trade schedule using the techniques described above and results
in the buys initially being transacted at a faster rate to offset the incremental
risk until the residual position is hedged. Following this optimized trade
schedule, the position is traded into the hedged position at 12 p.m. After
this time, the buys and sells are transacted at the same trading rate.

Fig. 14.3B illustrates how the basket may be traded in a situation with favor-
able price movement. Suppose that by 10:15 a.m. there was a decline in mar-
ket prices after the open. This makes buys cheaper but sells more expensive.
But since there are more shares to buy than there are to sell, investors are
better off. A manager employing the AIM tactic can take advantage of the
better market prices and trade into the hedged position at a faster rate.
Here the manager achieves the hedged position by 11:15 a.m. After this
time the portfolio is traded at the more passive rate until completion to
reduce market impact cost. A manager employing the PIM adaption tactic
will wish to take advantage of the “good” risk and “better” prices and trade
at a slower rate. Here the manager does not trade into the hedged position
until 1:15 p.m. After this time the shares are traded at a passive rate to reduce
market impact cost. In both situations, once the basket achieves its maximum
hedged position the AIM and PIM tactics will not have any effect on the
trading schedule. But there is usually something that can always be refined
during trading.

How Often Should we Reoptimize?
The next question that often arises is how often should we reoptimize the
portfolio. Many of the self-proclaimed industry pundits state it should be
done continuously. Others state that reoptimization should be performed
at certain intervals such as every 5, 10, or 15 min. We could not disagree
more. Portfolio algorithms should be reoptimized if performance is pro-
jected to be dramatically different than expected, market conditions are
different than planned, or if there are opportunities to take advantage of
liquidity and prices. The difference between single stock and portfolio algo-
rithms, however, is that when trading portfolios investors are interested in
the overall portfolio risk and not necessarily the performance of an individ-
ual order. For example, if there is sufficient liquidity and favorable prices
that would allow the trader to complete the order at great prices it may
not be in their best interest to do so if the net result would adversely affect
the hedge of the portfolio and increase overall portfolio risk. Portfolio anal-
ysis needs to be performed from the risk perspective of the portfolio not
from the risk perspective of any individual stock.
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Our recommendation for reoptimization criteria is based on the z-score of
projected performance. This is similar to the z-score reoptimization criteria
used for the single stock algorithms. This measure is:

Zt ¼ E0ðCostÞ � EtðCostÞ
EtðTiming RiskÞ

A positive score indicates investors are performing better than projected and
a negative score indicates investors are performing worse than projected.
The z-score above measures the number of standard deviations away from
our original cost estimate we are projected to finish given actual market con-
ditions. Investors could elect to reoptimize the portfolio algorithm if the
z-score at any point in time exceeds a specified range such as jZj > �1 or
jZj > �1=2. Some investors elect only to reoptimize if the z-score is less
than a specified value. In these cases, reoptimization would only occur if per-
formance is expected to be less favorable.

Investors, of course, could also reoptimize if there is opportunity to deviate
from an optimally prescribed strategy to improve overall risk characteristics
of the trade list and reduce trading costs. This can also be done on an indi-
vidual stock basis and is described below.

Investors should also reoptimize and change their strategy if there is reason
to believe that their trading intentions have been uncovered by market par-
ticipants, which would lead to higher trading costs.

Appendix
The matrices for the QP trade schedule optimization technique are calcu-
lated as follows:
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The inequality constraint matrix eA2 and vector eb2 are:
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and x�i is the maximum quantity that can be traded in any period for stock i
defined by the trader.
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Chapter15
Advanced Algorithmic Modeling

Techniques

INTRODUCTION
This chapter introduces readers to advanced algorithmic forecasting tech-
niques. We begin by reformulating our transaction cost equations in terms
of the various trading strategy definitions, such as percentage of volume
(POV) , trade rate, and trade schedules, and calibrate the parameters for
these model variations. Estimated market impact costs for each approach
are compared for the different data samples.

The chapter continues with an overview of the various transaction equations
that are utilized to construct the efficient trading frontier (ETF) and to
develop optimal “best execution” strategies. All of which are essential
building blocks for traders and portfolio managers interested in improving
portfolio returns through best in class transaction costs management prac-
tices. The chapter concludes with insight into managing trading risk for bas-
kets during execution.1

TRADING COST EQUATIONS
Our market impact and timing risk equations expressed in terms of percent-
age of trading volume POV are:

I�bp ¼ â1$

�

X

ADV

�â2

$sâ3

MIbp ¼ b̂1$I
�$POVâ4 þ ð1� b̂1Þ$I�

TRbp ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
$
1
250

$
X

ADV
$
1� POV

POV

r

$104bp

1We would like to thank Connie Li, M.S., from Cornell Financial Engineering, a financial
quant, for providing invaluable insight into the proper formulation of these mathematical
techniques and for testing and verifying these equations.
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where,

X ¼ total shares to trade
ADV ¼ average daily volume
s ¼ annualized volatility (expressed as a decimal, e.g., 0.20)

POV ¼ X
XþVt

¼ percentage of trading volume rate

Vt ¼ expected market volume during trading period (excluding the or-
ders shares X)
a1, a2, a3, a4, b1 ¼ model parameters estimated via nonlinear estimation
techniques

Model Inputs
On the surface, the cost estimation process seems straightforward, espe-
cially after having already estimated the model parameters. Investors simply
need to enter their shares “X”and preferred “POV”execution strategy, and
the model will determine cost estimates for these inputs.

However, is the process really this simple and straightforward? Will the
model provide accurate cost forecasts?

To answer these questions, let’s take a closer look at our equations. Our
transaction cost model consists of three different sets of input information:

1. User-specified inputs: X, POV
2. Model parameters: a1, a2, a3, a4, b1
3. Explanatory factors: s; ADV ; Vt

The first set of input information is entered by the user and is based on the
investment decision and the investor’s urgency preference. In the chapter
Estimating Market Impact Parameters, we provided nonlinear regression
techniques to estimate parameters of the model and test the model sensi-
tivity. In the chapter Risk, Volatility, and Factor Models, we provided tech-
niques to forecast price volatility and price covariance.

Trading Strategy
Algorithmic trading makes use of three types of trading strategies: percent-
age of volume “POV” trading rate “a; ” and trade schedule “xk.”

Let

X ¼ total shares to trade
Vt ¼ expected volume during the trading horizon (excluding shares from
the order)

376 CHAPTER 15 Advanced Algorithmic Modeling Techniques



The trading strategy variables are:

Percentage of Volume

POV ¼ X

X þ Vt
0% � POV � 100%

The percentage of volume POV variable measures the amount of market vol-
ume the order participated with over the trading period. For example, if a
trader executes 20,000 shares of stock over a period where 100,000 shares
are traded in the market (including the order) the POV rate is 20,000/
100,000 ¼ 20%. POV is a very intuitive measure. For example,
POV ¼ 25% means the order participated with 25% of market volume,
and POV ¼ 100% means that the trader accounted for all the market volume
during this period. POV is the preferred trading strategy metric when moni-
toring current and historical trading activity.

The disadvantage of the POV strategy is that it contains a decision variable in
the denominator, which creates an additional layer of mathematical
complexity during trade strategy optimization and increases the solution time.

Trading Rate

a ¼ X

Vt
a � 0

The trading rate variable a is the ratio of the shares traded, X to the market
volume, Vt during the trading period, excluding its own traded shares. For
example, if a trader executed 20,000 shares in the market over a period
when 100,000 shares traded in the market, 20,000 shares from the investor’s
order and 80,000 shares from other participants, then the trading rate is a ¼
20; 000=80; 000 ¼ 25%. If a trader executed 20,000 shares in the market
over a period when 30,000 shares traded in the market, 20,000 shares
from the investor’s order and 10,000 shares from other participants, then
the trading rate is a ¼ 20; 000=10; 000 ¼ 200%.

Trading rate, unfortunately, is not as intuitive as POV rate. A trade rate of
a ¼ 100% does not mean that the traders participated with 100% of market
volume but rather the investor participated with 50% of market volume. The
advantage of the trade rate is that it does not have a decision variable in the
denominator, so trading solution calculations are less complex and optimiza-
tion processing time is much quicker. Trading rate is the preferred metric
when forecasting costs and developing single stock optimal trading
strategies.
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Trade Schedule
The trade schedule xk strategy defines exactly how many shares to transact in
a given trading period. For example, the trade schedule for an order executed
over n-period is:

x1; x2; x3; .; xn

and represents the number of shares to trade in periods 1, 2, 3,., n. The total
number of shares executed over this period is X ¼Pxi. The advantage of the
trade schedule is that it allows front loading and/or back loading of trades to
take advantage of anticipated price movement, volume conditions, as well as
effective risk management during a basket trade (these are further discussed in
the chapter Portfolio Algorithms and Trade Schedule Optimization).

Comparison of POV Rate to Trade Rate
There is a direct relationship between the trading rate a and POV rate:

POV ¼ a

1þ a
and a ¼ POV

1� POV

A comparison of POV rate to a is shown in Fig. 15.1. For POV less than
15% there is minimal difference in these two calculations. However, as
we start increasing these rates, measures start to deviate.

TRADING TIME
We define trading time in terms of volume time units. The value represents
the percentage of a normal day’s volume that would have traded at a given
point in time. For example, if 1,000,000 shares trade on an average trading

Trading Strategies

0%

10%

20%

30%

40%

50%

60%

0% 5% 10% 15% 20% 25% 30% 35%

Percent of Volume
Trade Rate

n FIGURE 15.1 Trading Strategies.

378 CHAPTER 15 Advanced Algorithmic Modeling Techniques



day, the volume time when 250,000 shares trade is t* ¼ 250,000/
1,000,000 ¼ 0.25. The volume time when 1,250,000 shares trade is
t* ¼ 1,250,000/1,000,000 ¼ 1.25.

Volume time t* is expressed as:

t� ¼ Vt

ADV

Trading time can also be written in terms of trade rate a and POV rate. This
calculation is as follows. Suppose the order is comprised of X shares. Then
we can write trading time as:

t� ¼ Vt

ADV
$

�

X

X

�

¼ X

ADV
$
Vt

X

In terms of trade rate a we have:

t� ¼ X

ADV
$a�1

In terms of POV rate we have:

t� ¼ X

ADV
$
1� POV

POV

Trading Risk Components
The timing risk (TR) measure is a proxy for the total uncertainty surrounding
the cost estimate. In other words, it is the standard error of our forecast. This
uncertainty is comprised of three components: price uncertainty, volume vari-
ance, and parameter estimation error. These are further described as follows:

Price volatility: Price volatility refers to the uncertainty surrounding price
movement over the trading period. It will cause trading cost (ex-post) to
be either higher or lower depending upon the movement and side of the or-
der. For example, if the price moves up $0.50/share, this movement results in
a higher cost for buy orders but a lower cost (savings) for sell orders. For a
basket of stock, price volatility also includes the covariance or correlation
across all names in the basket. Price volatility is the most commonly quoted
standard error for market impact analysis. It is also very often the only stan-
dard error component.

Volume variance:Volume variance refers to the uncertainty in volumes and
volume profiles over the trading horizon, which could be less than, equal to,
or more than a day. For example, if an investor trades an order over the full
day, the cost will be different if the total volume is 1,000,000 shares,
5,000,000 shares, or only 200,000 shares.

Trading Time 379



Parameter estimation error: Parameter estimation error is the standard er-
ror component from our nonlinear regression models. As shown in the
chaptereEstimating Market Impact Parameters, there is some degree of un-
certainty surrounding the parameters that will affect market impact esti-
mates. For simplicity, we define the timing risk measure to include only
the price volatility term when quoting the standard error of the market impact
estimate but analysts conducting advanced sensitivity analysis may want to
incorporate these additional components into the timing risk estimate. We
have found that the easiest way to determine the overall uncertainty is via
Monte Carlo simulation where volumes, intraday profile, price movement,
and parameter values are sampled from historical observations and its esti-
mated distribution. Investors performing this type of analysis may find
that corresponding market impact uncertainty is much larger than simply
the standard deviation of price movement.

Trading Cost ModelsdReformulated
Market Impact Expression
Our market impact equations can be restated in terms of our trading strate-
gies as follows:

I-Star
The I-Star calculation written in basis points and total dollar units is:

I�bp ¼ a1$

�

Q

ADV

�a2

$sa3

I�$=Share ¼ a1$

�

Q

ADV

�a2

$sa3$10�4$P0

I�$ ¼ a1$

�

Q

ADV

�a2

$sa3$10�4$X$P0

Market Impact for a Single Stock Order
The units of the market impact cost will be the same units as the instanta-
neous cost I-Star. Market impact cost for the three different trading strategy
definitions is:

POV Strategy MIðPOVÞ ¼ b1$I�$POVâ4 þ ð1 �b1Þ$I�

Trade Rate Strategy MIðaÞ ¼ b1$I�$aâ4 þ ð1 �b1Þ$I�

Trade Schedule MIðxkÞ ¼ P
t

k¼ 1

�

b1 $I� $
x2k

X$vk

�

þ ð1 �b1Þ$I�

with
P

xk ¼ X
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The trade schedule model defined above is shown without the shape param-
eter a4 for simplicity. Advanced trade schedule market impact models will
likely include the a4 shape parameter. We proceed with a simpler model
with a4 ¼ 1 as follows:

Start with the instantaneous cost estimate I*. This value is allocated to each
trade period based on the percentage of the order transacted in that period. If
xk shares of the total order X were executed in period k then the percentage I*
allocated to period k is:

I�$
xk
X

Therefore the percentage of temporary impact allocated to period k is
b1$I�$xkX and the percentage of permanent impact allocated to period k
is ð1 �b1Þ$I�$xkX .
The temporary impact cost is allocated to the investor based on the percent-
age of volume of the trade in that period. This is:

b1 $ I
�$
xk
X
$

xk
xk þ vk

For simplicity, however, we rewrite temporary impact cost in terms of the
trade rate as follows:

b1 $ I
�$
xk
X
$
xk
vk

Finally, the total market impact cost of a trade schedule over all periods is
determined by summing the cost over all periods. That is:

MIðxkÞ ¼
X
n

k¼ 1

b1$I
�$
xk
X
$
xk
vk

þ
X
n

k¼ 1

xk
X
$ð1� b1Þ$I�

This formation is then simplified as:

MIðxkÞ ¼
X
n

k¼ 1

�

b1 $ I
� $

x2k
X$vk

�

þ ð1� b1Þ$I�

As stated, the units of the market impact cost will be the same as the units
used to calculate I*. Kissell and Glantz (2003) and Kissell, Glantz, and
Malamut (2004) provide alternative derivations of the trade schedule market
impact formulation.
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Important note
Notice that the market impact formulation for a one-period trade schedule
reduces to:

MIbp ¼ b1$I
�$

�

X

Vt

�

þ ð1� b1Þ$I�

This is the same formulation as the trade schedule formulation with a4 ¼ 1.
The importance of this equation is that it will be used to calibrate the market
impact parameters for the trade schedule solution (shown below). Recall that
this was also the simplified version of the model described in the two-step
regression process shown in the chaptereEstimating Market Impact Models.

Market impact cost across stock is an additive function. Therefore the
impact for a basket of stock is the sum of impacts for the entire basket.
The addition problem is simplified when market impact is expressed in dol-
lar units so that we do not need worry about trade value weightings across
stocks. These are:

Market Impact for a Basket of Stock

MI$ðPOVÞ ¼
X
m

i¼ 1

�

b1 $ I
�
i $POV

a4
i þð1� b1Þ $ I�i

�

MI$ðaÞ ¼
X
m

i¼ 1

�

b1 $ I
�
i $a

a4
i þð1� b1Þ $ I�i

�

MI$ðxkÞ ¼
X
m

i¼ 1

X
n

k¼ 1

�

b1 $ I
�
i $

x2ik
Xi$vik

�

þ ð1� b1Þ$I�i

Timing Risk Equation
The timing risk for an order executed over a period of time t* following a
constant trading strategy is as follows:

TRðt�Þbp ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$t�

r

$104bp

This equation simply scales price volatility for the corresponding trading
period t* and adjusts for the trade strategy (e.g., decreasing portfolio size).
For example, s is first scaled to a one-day period by dividing by

ffiffiffiffiffiffiffiffi

250
p

,
then this quantity is scaled for the appropriate trading time by multiplying
by

ffiffiffiffi

t�
p

. Recall that t* is expressed in volume time units where t* ¼ 1
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represents a one-day time period (volumeetime). And since the order size is
decreasing in each period, timing risk needs to be further adjusted downward
by the

ffiffiffiffiffiffiffiffi

1=3
p

factor (see derivation below). This value is converted to basis
points by multiplying by 104bp.

Therefore timing risk is expressed in terms of POV and a as:

TRbpðPOVÞ ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$
1� POV

POV

r

$104bp

TRbpðaÞ ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$a�1

r

$104bp

These values expressed in terms of dollars follow directly from above:

TR$ðPOVÞ ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$
1� POV

POV

r

$X$P0

TR$ðaÞ ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$a�1

r

$X$P0

The reason the timing risk equations simplify so nicely is that the POV and
a strategies assume a constant trading rate. Timing risk for a trade schedule,
however, is not as nice. It is slightly more complicated since we need to es-
timate the risk for each period. This is as follows:

Let

rk ¼ number of unexecuted shares at the beginning of period k

rk ¼
X
n

j¼ k

xj

d ¼ number of trading periods per day
vk ¼ expected volume in period k excluding the order share
�

s2 $ 1
250 $

1
d

�

¼ price variance scaled for the length of a trading period

P0 ¼ stock price at the beginning of the trading period

Timing risk for a trade schedule is the sum of the dollar risk in each trading
period. That is:

TR$ðxkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

k¼ 1

r2k$s
2$

1
250

$
1
d
$P2

0

s
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In this notation, s2 is expressed in ($/share)2 units and scaled for the length
of the trading period. We divide by 250 to arrive at the volatility for a day
and then further divide by the number of periods per day d. For example,
if we break the day into 10 equal periods of volume we have d ¼ 10. Finally,
multiplying by P2

0 converts volatility from return2 units to ($/share)2. Timing
risk (variance) is now the sum of each period’s variance over n trading ho-
rizons. Taking the square root gives timing risk value in total dollars.

Now suppose that we follow a constant trade rate. That is, the portfolio will
be decreasing in a constant manner.

Derivation of the 1/3 Factor
As shown above, risk for a specified trade rate is:

<ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2$
1
250

$
X

ADV
$
1
a
$s2$

1
3
$P2

0

r

The derivation of the 1/3 adjustment factor is as follows:

Let R represent the vector of shares and C represent the covariance matrix
scaled for a single period expressed in ($/share)2. Then, the one-period port-
folio risk is:

<ð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

R0CR
p

For simplicity, we proceed using variance (risk squared). This is:

<2ð1Þ ¼ R0CR

The total variance over n-periods is an additive function:

<2ðnÞ ¼ R0CR
|fflffl{zfflffl}

1

þR0CR
|fflffl{zfflffl}

2

þ.R0CR
|fflffl{zfflffl}

n

¼ n$R0CR

For a constant portfolio R, variance scales with the square root of the number
of trading periods:

<ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n$R0CR
p

¼ ffiffiffi

n
p

$
ffiffiffiffiffiffiffiffiffiffiffiffi

R0CR
p

¼ ffiffiffi

n
p

$<ð1Þ
This is often shown using the time notation as follows:

<ðtÞ ¼ ffiffi

t
p

$<ð1Þ
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For a portfolio where the share quantities change from period to period, the
risk calculation will not simplify as it does above. Risk will need to be
computed over all periods. This is:

<2ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R0
1CR1

|fflfflffl{zfflfflffl}

1

þR0
2CR2

|fflfflffl{zfflfflffl}

2

þ.R0
nCRn

|fflfflffl{zfflfflffl}

n

s

where Rk is the vector of portfolio shares in period k. This reduces to:

<ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

k¼ 1

R0
kCRk

s

Trading risk for a trade schedule for a single stock execution is calculated as
follows:

<2ðrkÞ ¼
X
n

j¼ 1

r2j $s
2$P2

0

where s2 is the corresponding one-period variance expressed in ($/share)2,
P0 is the current price, and <2ðrkÞ is the total dollar variance for the strategy.
Notice that we are simply summing the variance in each period.

For a continuous trade rate strategy where we execute the same number of
shares in each period, the number of unexecuted shares at the beginning of
each trade period is calculated as follows:

rj ¼ X � X

n
$ðj� 1Þ ¼ X

�

1�ðj� 1Þ
n

�

where X is the total number of shares in the order.

Then, the number of unexecuted shares at the beginning of each period
squared is:

r2j ¼ X2

�

1� ðj� 1Þ
n

�2

Now let

s2 ¼ the annualized variance
t* ¼ total time to trade in terms of a year (same units as volatility), e.g.,
t ¼ 1 is 1 year, t ¼ 1/250 ¼ 1 day, etc.

n ¼ number of periods in the trading interval
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Then we have

t�$s2 ¼ variance scaled for the time period

t�$s2

n ¼ variance scaled for a trading interval

For example, if the trading time is 1 day and the day is segmented into 10
periods, then we have:

s2ðtrading periodÞ ¼ 1
250

$
s2

10

The variance of the trade schedule is:

<2ðrkÞ ¼
X
n

j¼ 1

R2
j $t

�$
s2

n
$P2

0

By substitution, we have:

<2ðrkÞ ¼
X
n

j¼ 1

X2

�

1� ðj� 1Þ
n

�2

$t�$
s2

n
$P2

0

By factoring, we have:

<2ðrkÞ ¼ X2$P2
0$t

�$
s2

n
$
X
n

j¼ 1

�

1� ðj� 1Þ
n

�2

And by expansion, we have:

<2ðrkÞ ¼ X2$P2
0$t

�$
s2

n
$
X
n

j¼ 1

 

1� 2ðj� 1Þ
n

þðj� 1Þ2
n2

!

Using the following identities:

X
n

j¼ 1

1 ¼ n

X
n

j¼ 1

x ¼ nðnþ 1Þ
2

X
n

j¼ 1

x2 ¼ nðnþ 1Þð2nþ 1Þ
6

Our timing risk equation is now:

<2 ¼ X2$P2
0$t

�$s2$
1
n

�

n�ðn� 1Þþ ðn� 1Þð2n� 1Þ
6n2

�
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This further reduces to:

<2 ¼ X2$P2
0$t

�$s2$

�

1
3
þ 1
n
þ 1
2n

þ 1
6n2

�

Now if we let the number of trading periods over the defined trading time
increase, the size of the trading interval becomes infinitely small and our
trade schedule strategy approaches a continuous trade rate strategy.

Next, take the limit as n/N:

lim
n/N

X2 $P2
0$t

�$s2$

�

1
3
þ 1
n
þ 1
2n

þ 1
6n2

�

¼ X2$t�$s2$
1
3

Therefore the timing risk for a continuous strategy trading over time ¼ t* is:

< ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2$P2
0$t

�s2$
1
3

r

Substituting back for t� ¼ 1
250$

X
ADV$

1
a
we get:

<ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2$P2
0$

1
250

$
X

ADV
$
1
a
$s2$

1
3

r

Simplifying, we have timing risk for a single stock order:

<ðaÞ ¼ s$X$P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$

X

ADV
$
1
a

r

QED

Timing Risk For a Basket of Stock
The timing risk for a basket of stock expressed in total dollars is:

TR$ðxkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2$
X
n

k¼ 1

r=k eCrk

s

where

rk ¼ column vector of unexecuted shares at the beginning of period k

rk ¼

0

B

B

B

@

r1k
r2k
«

rmk

1

C

C

C

A

rik ¼ unexecuted shares of stock i at the beginning of period k
eC ¼ covariance matrix expressed in terms of $/share2 and scaled for a
trading period
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To express the timing risk for the basket of stock in terms of basis points we
simply divide the timing risk dollar amount by the initial value of the trade
list V$ ¼ P

X$P0$104.

Comparison of Market Impact Estimates
Market impact parameters are computed for the different trading strategy
representations of the model and for each of the data samples: all data, large
cap, and small cap categories. These results are shown in Table 15.1.

As expected, the nonlinear R2 statistics are almost equivalent for the POV
and trade rate strategies since there is a near one-to-one relationship between
POV and a, especially for realistic percentage of volume levels (e.g.,
POV <40%). Additionally, the trade schedule nonlinear R2 is just slightly
lower than POV and trade rate strategies, which implies that the trade
schedule formulation provides reasonable results.

Comparison of parameter values, however, from the different models is not
the preferred process to evaluate models. As we showed in previous chap-
ters, models could have seemingly different parameter sets yet provide the
same cost estimates. Then, the easiest way to compare models is through
cost estimates for various sizes and strategies.

Table 15.1 Market Impact Parameters by Trade Strategy Definition.

a1 a2 a3 a4 b1 Non-R2

All Data

POV 708 0.55 0.71 0.50 0.98 0.41

Trade Rate 534 0.57 0.71 0.35 0.96 0.41

Trade Schedule 656 0.48 0.45 1 0.90 0.38

Large Cap Sample

POV 687 0.70 0.72 0.35 0.98 0.42

Trade Rate 567 0.72 0.73 0.25 0.96 0.42

Trade Schedule 707 0.59 0.46 1 0.90 0.37

Small Cap Sample

POV 702 0.47 0.69 0.60 0.97 0.42

Trade Rate 499 0.49 0.69 0.40 0.97 0.42

Trade Schedule 665 0.42 0.47 1 0.90 0.39
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Our analysis consisted of comparing costs for sizes from 1% ADV to 35%
ADV for a full day volume-weighted average price (VWAP) strategy and
an equivalent POV ¼ 20%strategy. We used the parameters for the full uni-
verse category and a volatility ¼ 30% for the comparison test. The results
are shown in Fig. 15.2 and show that their results are consistent under the
various model forms. Readers are encouraged to verify these calculations
and to compare the models using the parameters from large cap and small
cap data sets for different strategies.

Fig. 15.2A compares market impact estimates for a VWAP strategy using
POV, trade rate, and the trade schedule. Notice that the POVrate and trade
rate estimates are virtually indistinguishable and the trade schedule estimates
only have a slight difference.
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n FIGURE 15.2 Comparison of Market Impact Estimates. (A) Market
Impact CostdVWAP Strategy. (B) Market Impact CostdAggressive
Strategy.
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Fig. 15.2B compares market impact estimates for POV ¼ 20% and trade rate
a ¼ 25%. The trade schedule cost estimates also corresponded to
a ¼ 25% but with a4 ¼ 1. Again, there is minimal difference between the
three trade strategy definitions.

Forecasting Covariance
In this section we discuss a technique to construct a short-term risk model
based on our price volatility forecasting model and multifactor model to es-
timate covariance. In Kissell and Glantz (2003) we provide a detailed pro-
cess to construct a short-term trading risk model based on a principal
component risk model and a generalized autoregressive conditional hetero-
skedasticity (GARCH) volatility estimate. In this section we provide a more
general process that can incorporate any risk model combined with any
volatility estimate (e.g., the historical moving average volatility adjusted
based on the change in the VIX volatility index “HMA-VIX” approach).

This process is as follows:

Let

C ¼ covariance matrix constructed from our multifactor model
D ¼ diagonal matrix of historical volatilities (from risk model)
bD ¼ diagonal matrix of forecasted volatilities (e.g., HMA-VIX,
GARCH, etc.)
P ¼ diagonal matrix of current prices

Step #1: Convert the covariance matrix C to a correlation matrix Rho by
dividing by the corresponding volatility terms.

Rho ¼ D�1CD�1

Step #2: Incorporate the forecasted volatility from the preferred forecasting
model, e.g., HMA-VIX, GARCH, EWMA, etc., into the new covariance
matrix bC:

bC ¼ bDðRhoÞbD ¼ bDD�1CD�1
bD

This covariance matrix will now be scaled to the same time period as the
price volatility term. For example, if the volatility forecast is a one-day fore-
cast, then the covariance matrix bC is also a one-day estimate. If we are inter-
ested in a time period that is different than the time scale of the price
volatility estimates we simply divide by that appropriate value. For example,
if we break the day into n-trading periods the covariance matrix for the time
horizon is:

bC ¼ 1
n
$bDðRhoÞbD ¼ 1

n
$bDD�1CD�1

bD
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Step #3: Convert the covariance matrix expressed in returns2 into ($/share)2.
Here we simply multiply by our diagonal price matrix from P above:

eC ¼ PbCP ¼ 1
n
$PbDD�1CD�1

bDP

This covariance matrix is now scaled for the appropriate length of time for
our trading period and is expressed in ($/share)2 for our trade schedule
timing risk calculations. This matrix will also be extremely important for
portfolio optimization.

The general form of our trading risk model is:

eC ¼ 1
n
$PbDD�1CD�1

bDP

Many times, investors will need the covariance matrix to be adjusted for a
one-sided portfolio. In this case, we adjust the entries in the covariance ma-
trix based on the side of the order. For example:

c�ij ¼ sideðiÞ$sideðjÞ$cij
where cij is the computed covariance scaled for the length of the trading
period and in ($/share)2. The full side-adjusted covariance is computed
via matrix multiplication following the techniques above as follows:

eC ¼ 1
n
$ðSideÞPbDD�1CD�1

bDPðSideÞ

where (Side) is a diagonal matrix consisting of either a 1 if a buy order or�1
if a sell order. We make use of the side-adjusted trading risk covariance in
the Chapter 8.

Efficient Trading Frontier
The ETF is the set of all optimal trading strategies. These are the strategies
that contain the least risk for a specified cost and have the lowest cost for a
specified risk. A rational investor is someone who will only trade via an
optimal trading strategy. If an investor is trading via a strategy that is not
on the efficient trading frontier it is unlikely that they will achieve best
execution regardless of their actual execution costs.

If a strategy is not optimal (e.g., it is above the ETF), then there exists a
strategy with either (1) a lower cost for the same level of risk, (2) less
risk for the same cost, or (3) a lower cost and less risk.
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The ETF is constructed via an optimization process. The general equation
is:

Min L ¼ Cost þ l$Risk

where cost represents both market impact and alpha cost. In situations
where investors do not have an alpha forecast or believe the natural price
drift over the trading horizon to be zero, they will only include the market
impact cost component in the optimization.

Analysts then solve this equation for all values of l >0 and plot the sets of
cost and risk. An example of the ETF is shown in Fig. 15.3. This figure il-
lustrates the tradeoff between market impact and timing risk. As the strategy
becomes more aggressive, timing risk decreases but market impact in-
creases. As the strategy becomes more passive, timing risk increases but
market impact decreases. Market impact and timing risk are conflicting
terms. Decreasing one term results in an increase in the other term. Unfortu-
nately, there is no way to simultaneously minimize both terms.

Fig. 15.3 illustrates various optimal trading strategies. Strategy A1 in the
figure is not an optimal strategy because it does not contain the least cost
for the level of risk or the lower risk for the corresponding cost. For example,
strategy A2 has the same market impact as A1 but reduced risk. Strategy A3

has the same timing risk as A1 but lower impact. Strategy A4 has both lower
market impact and less timing risk than A1. These strategies would be
preferred over A1.

Fig. 15.3 illustrates the ETF in the presence of alpha momentum. Notice in
this case that market impact is decreasing until strategy X1 is reached. After
this time, however, market impact begins to increase again due to the alpha
cost of the trade. If the trader executes too passively the increased alpha cost
will become greater than the reduced market impact cost. Hence, in these sit-
uations, traders waiting too long to trade will incur increased risk and
increased cost. The most passive a trader should execute this trade is repre-
sented by strategy X1 in figure 15.3.

The optimization process for a single stock order and trade portfolio is
shown below. The single stock process is further discussed in the chapter
Algorithmic Decision Framework and the portfolio optimization process
is further discussed in the chapter Portfolio Algorithms andand Trade
Schedule Optimizations.
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Single Stock Trade Cost Objective Function

Min
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Portfolio Trade Cost Objective Function

Min
X
m

i¼ 1

X
n

j¼ 1

xij $

�

b1 $ I
�
i $
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xij
Xi

�
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þ
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$ ð1� b1Þ $ I�i
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X
n
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s

Both optimizations will also contain user-specified constraints.

Author’s notes

It is important to mention that the parameter l is used to specify the inves-
tor’s level of risk aversion. This represents how much market impact cost the
investor is willing to incur to reduce timing risk by an additional unit. In this
formulation, lambda can take on any value greater than zero. That is, l �0.

In a costerisk optimization the value of lambda is directly related to the
resulting optimal trading strategy plotted on the ETF. The tangent on the
ETF at this point will be equal to the negative value of specified lambda.
If l ¼ 1, then the tangent of the ETF at this point will have a slope equal
to m ¼ �1.

In general, setting lambda high will result in an aggressive strategy with
higher market impact but lower timing risk. Setting lambda low will result
in a passive strategy with lower market impact but higher timing risk. Un-
fortunately, there is no universal convention for the meaning of lambda in
the optimization process.

Some brokers will optimize the tradeoff between cost and variance rather
than cost and standard deviation (as we show above). In optimization, the
meaning of lambda will be much different using variance rather than stan-
dard deviation (the square root of lambda). Additionally, the value of
lambda used in costevariance optimization will not be the negative value
of the tangent of the strategy on the ETF.

Additionally, some brokers specify a mapping between the strategies on the
ETF and a qualitative term, for example, using Low, Med, and High, or Pas-
sive, Normal, and Urgent, where each of these qualitative labels is mapped
to different values of lambda. Other brokers may map values of lambda to
be between 1 � l � 10 where 1 ¼ passive and 10 ¼ aggressive, or between
1� l� 3. Some only allow values between say 0� l� 1 in a slightly refor-
mulated optimization such as:

Min L ¼ l$Cost þ ð1� lÞ$Risk
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It is important to point out that there is not enough consistency in the indus-
try to compare results based on the selected value of lambda. There are large
differences across the meaning of algorithmic parameters. Investors need to
understand the optimization process used by their brokers and vendors and
its meaning on the costerisk tradeoff to make an informed trading decision.

Managing Portfolio Risk
We have previously discussed adaptation techniques to manage risk from a
portfolio optimization perspective following our Asset Information Model
and Project Information Model methodologies using real-time reoptimiza-
tion. In this section we discuss three techniques to determine how to eval-
uate potential deviation tactics for individual stocks.

These are:

1. Minimize trading risk
2. Maximize trading opportunity
3. Program-block decomposition

From the investor’s perspective, these techniques provide: improved algo-
rithmic trading rules, better specification of market and limit orders, and
appropriate utilization of nontraditional trading venues such as crossing net-
works and dark pools where liquidity is not transparent. These criteria have
been stated in Optimal Trading Strategies (2003) and in Algorithmic
Trading Strategies (2006). We expand on those findings and apply them
to today’s portfolio trading algorithm needs.

Residual Risk Curve
The total dollar risk in a trade period for a portfolio is:

Risk$ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi

rttCrt
p

where rt is the residual share vector at time t and C is the side-adjusted
covariance matrix scaled for the length of the trading interval.

The residual risk curve shows how the total portfolio risk will change as we
change the number of shares of a stock holding all other share amounts
constant.

From the first and second derivatives of Risk$ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi

rttCrt
p

we find that the
residual risk curve is a convex function with a single minimum value at:

ri;min ¼ �1
s2
i

X

jsi

rjsij
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This minimum value could be either more or less than the current number of
shares of the stock in the portfolio. If the minimum value is less than the
current position, traders could reduce portfolio risk by trading shares and
reducing the holding size. If the minimum value is greater than the current
position, traders could reduce portfolio risk by adding shares to the portfolio
and increasing the holding size. However, if a trader needs to adhere to a
shrinking portfolio constraint they can only reduce portfolio risk if this min-
imum value is less than the current number of shares held in the basket.

Fig. 15.4 depicts the scenario where the residual risk curve achieves its min-
imum value. In this example, an investor with a basket of stock has ri shares
of stock i. The figure shows two interesting trading values. The first is
rimin ¼ ri�yi and represents the number of shares that can be traded to
achieve minimum portfolio risk. The second value is rimax ¼ ri�zi and rep-
resents the maximum number of shares that can be transacted without
adversely affecting risk. That is, the residual risk will be the same after
trading the shares as it was before trading the shares. These two values
will be referred to as: (1) minimum trading risk quantity, and (2) maximum
trading opportunity, respectively.

The minimum trading risk quantity is useful for investors continuously
striving to take advantage of favorable liquidity conditions to minimize
portfolio risk over time. The maximum trading opportunity is useful for in-
vestors striving to reduce trading cost without adversely affecting the over-
all risk of the trade basket. In both situations, investors can accelerate
transactions in a stock without adversely affecting risk.

Residual Risk Curve for Sell Order
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Minimum Trading Risk Quantity
The minimum trading risk quantity is calculated as follows.

Let r be the current portfolio and let yk indicate the number of shares to trade
in stock k. Then these vectors are:

r ¼

0

B

B

B

B

B

B
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where (r� y) is the portfolio after trading yk shares of stock k. Notice that the
y vector only contains one value yk for the stock that we are looking to trade.
Having zeros in the other entries ensures that the other position sizes remain
constant. Our goal is to determine the value of yk that will minimize portfolio
risk.

Portfolio risk after trading will be:

Risk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � yÞ0Cðr � yÞ
q

The number of shares to trade that will minimize total portfolio risk is deter-
mined by differentiating portfolio risk with respect to yk, setting this deriv-
ative equal to zero, and solving for yk. Mathematically, this is:

vRisk

vyk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � yÞ0Cðr � yÞ
q

¼ 0

Solving, we get:

yk ¼ 1
s2
k

X
n

j¼ 1

rjsij

If an investor needs to adhere to the shrinking portfolio constraint, the
feasible trading interval are values between zero and the original position
size rk. Recall that we are using a one-sided portfolio formulation and we
have already adjusted the covariance matrix. This constraint is:

0� yk � rk

Thus the actual number of shares that can be traded adhering to the shrink-
ing portfolio constraint is:

y�k ¼ minðmaxð0; ykÞ; rkÞ
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Maximum Trading Opportunity
Calculation of the maximum trading opportunity is as follows:

Let r be the current portfolio and let zk be the number of shares to trade in
stock k.

Then, these vectors are:

r ¼
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where (r� z) is the portfolio after trading zk shares of stock k. Notice that the
z vector only contains one value zk for the stock that we are looking to trade.
Having zeros in the other entries ensures that the other position sizes remain
constant.

Our goal here is to determine the maximum number of shares zk that can be
traded such that the risk after trading is equal to the same risk before trading.

Mathematically, this is as follows:

ffiffiffiffiffiffiffiffiffi

r0Cr
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � zÞ0Cðr � zÞ
q

Squaring both sides yields:

r0Cr ¼ ðr � zÞ0Cðr� zÞ
Expanding this equation yields:

z0Cz� 2r0Cz ¼ 0

Solving for zk yields two solutions as is expected since this is a quadratic
equation. These solutions are:

zk ¼ 0

zk ¼ 2$
1
s2
k

X
n

j¼ 1

rjsij

The first solution zk ¼ 0 is the naïve solution and implies that we do not
trade. If there are no transactions, then of course the risk does not change.

The second solution zk ¼ 2$ 1
s2
k

P
n

j¼ 1
rjsij is the value that is most interesting

to traders. It signifies the most trades that can occur without adversely
affecting portfolio risk. Also notice that this solution is twice the value of

398 CHAPTER 15 Advanced Algorithmic Modeling Techniques



the minimum trade risk quantity, which makes sense since the residual risk
curve is symmetric around the minimum value.

If traders need to adhere to the shrinking portfolio constraint the bounds on
zk are:

0� zk � rk

Thus the actual number of shares that can be traded adhering to the shrink-
ing portfolio constraint is:

z�k ¼ minðmaxð0; zkÞ; rkÞ
Fig. 15.3 depicts the residual risk curve for stock II. At the initial portfolio
position there are r2 ¼ 7000 shares of stock II and the total portfolio risk is
$2965. Total risk can be minimized by trading y2 ¼ 2583 shares resulting in
a total risk of $2932 and a new position size for stock II of 4417 shares.
Traders can transact up to z2 ¼ 5167 shares resulting in a new position
size of stock II of 1833 shares and still have the same overall risk of
$2965 as we had prior to trading. Trading more than 5167 shares would
result in higher risk exposure Fig. 15.5.
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When to Use These Criteria?
The minimum trading risk and maximum trading opportunity quantities
provide valuable guidelines for how much an algorithm or trader can
deviate from an optimally prescribed schedule without adversely affecting
performance. The recommendations are to accelerate trading up to the
maximum trading opportunity in times of favorable market prices and
liquidity and to decelerate trading to the minimum risk quantity in times
of high impact costs and lower liquidity.

For example, whenever faced with favorable prices, algorithmic trading
rules can be specified to take advantage of the displayed liquidity up to
the maximum trading opportunity. Algorithmic trading rules can also be
specified to enter and display limit orders up to the maximum trading oppor-
tunity. In times of illiquidity, high market impact, or short-term price drift
(with expected trend reversal), algorithmic trading rules can be written to
decelerate trading down to the minimum trading risk quantity.

Program-Block Decomposition
When investors enter orders into crossing venues or dark pools the execu-
tions are not guaranteed. Transactions will occur only if there is a counter-
party. When entering baskets into dark pools, traders are often concerned
that only some of their orders will trade and the resulting residual risk
will be more than the original value.

One-way investors can address this problem by decomposing the basket
into block and program subsets. The block subset represents those shares
contributing incremental risk to the basket. These are the shares that can
be entered into a dark pool and would result in less risk no matter how
many shares are executed. The program subset represents those shares
that are providing risk reduction through either diversification or hedging.
Accelerated trading of any of these shares is not recommended because if
the executions are not in the proper proportions the resulting residual risk
will be higher than the starting level of risk.

For example, stock A and stock B are perfectly correlated. If we are buying
$150K of A and selling $100K of B we have $50K worth of incremental
risk from stock A. Thus we could enter $50 shares of A into a dark pool
without worrying about our residual risk increasing. No matter how many
shares of A trade in the dark pool the resulting portfolio risk will be lower
than the original value. Now suppose that we are buying $100K of stock A
and selling $100K of stock B (the same value in both stocks). Since these
stocks are perfectly correlated, our market exposure is hedged and the total
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portfolio risk is equal to the stock’s idiosyncratic risk values. We want to
trade these names together to minimize risk and maintain our hedged posi-
tion. If we enter both stocks into a dark pool but are only transacting one of
the names, then the resulting residual risk will increase. These shares should
be transacted as a pair to maintain risk and to minimize market impact cost.
In the latter scenario it would not be advisable to submit these orders into a
dark pool for execution.

The general technique to determine our program-block decomposition is
through min-max optimization. That is, we seek to minimize the maximum
residual risk position. This is determined as follows:

Let

R ¼ ðr1;/; rk;/; rm; Þ0 represent the current trade portfolio
M ¼ P

m

i¼ 1
ri represent the total number of shares in the portfolio

Y ¼ ðy1;/; yk;/; ym; Þ0 represent the block subset
R� Y ¼ ðr1 � y1;/; rk � yk;/; rm � ym; Þ0 represent the program
subset
C ¼ one-sided covariance matrix scaled for a trading period and
expressed in ($/share)2

Next, let

Z ¼ ðz1;/; zk;/; zm; Þ0 represent the untraded shares from the block sub-
set after submission to the dark pool. That is, Y is entered into a dark pool
where some trades occur. Z represents those shares that did not transact in
the dark pool. Then,

R� Y þ Z ¼ ðr1 � y1 þ z1;/; rk � yk þ zk;/; rm � ym þ zmÞ0 represents
the residual portfolio after submission to the dark pool.

Then, the resulting total residual risk is:

Risk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR� Y þ ZÞ0CðR� Y þ ZÞ
q

with 0 � zk � yk � rk to ensure that there is no overtrading.

Mathematically, program-block decomposition can be formulated as a min-
max optimization problem where we minimize the worse-case scenario. For
a given number of shares S where S ¼ y1 þ / þ ym the block subset is
determined as follows:

Min
x

Max
y

ðR� Y þ ZÞ0CðR� Y þ ZÞ
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Subject to:

0� zk � yk � rk for all i; j

S ¼ y1 þ y2 þ.þ y3 for all i; j

Notice in this case that we make use of variance rather than standard devi-
ation (square root) enabling the formulation of a quadratic optimization
problem.

Fig. 15.6 illustrates the program-block decomposition process. The graph
shows the maximum and minimum residual risk that could arise for the cor-
responding number of shares that are entered into a dark pool or crossing
network. The x-axis shows the number of shares from zero to M (the total
number of shares). The graph shows three data series. The horizontal line
is the initial risk of the portfolio. This is the residual risk that would arise
if nothing is traded in the dark pool. The minimum residual risk line shows
the best-case scenario for the corresponding number of shares. This is the re-
sidual risk if all shares are traded in the dark pool. This is a decreasing value.
The maximum residual risk line shows the worse-case scenario that would
arise if only some of the shares are entered into the dark pool. This is an
increasing value. For example, suppose that an investor enters the entire
hedged two-sided basket into a dark pool. If all shares are executed, then
the residual risk will be zero (since there aren’t any shares remaining).
But if only one side of the portfolio is executed (such as all buy orders)

Program-Block Decomposition
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the residual portfolio will have fewer shares but risk will be higher because
the investor is no longer hedged to market movement.

In performing this exercise there will always be some number of shares S1
such that the worse-case scenario will be equal to the initial risk value. This
quantity S1 is a “free block order” or “free crossing order” and represents the
number of shares that can be entered into the dark pool and ensure the resid-
ual risk will never increase, regardless of the number of shares that may or
may not transact. The free block order resolves anxieties traders may have
about adverse selection. For example, if an investor is buying $150K of
stock RLK and selling $100K of a stock LMK (with correlation ¼ 1) the
investor has market exposures of $50K due to the higher value in RLK.
Hence, the investors could enter $50K of RLK into a dark pool and will al-
ways be better off if any shares are executed. This $50K represents the “free
block order” or “free block cross.” This number of shares should always be
entered into a dark pool to reduce market risk.
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Chapter16
Decoding and Reverse Engineering

Broker Models with Machine Learning
Techniques

INTRODUCTION
In this chapter we show how to decode and reverse engineer broker-dealer
models. As has been stated previously throughout the book, brokers and ven-
dors consider their market impact and transaction cost analysis models to be
highly proprietary. They do not provide investors with any insight into the
formulation or mathematical equations of these models, nor do they provide
investors with any statistical performance tests. Furthermore, these brokers
and vendors do not provide investors with functionality to allow investors
to run their models and perform analyses on their own desktops and com-
puter systems independent of the broker connections.

If a money manager wishes to perform a trade cost analysis for an upcoming
trade or as part of an analysis for stock selection and portfolio construction,
brokers and vendors require investors to load the order or list of stock into
their system or connect to their server via an API.

Brokers and vendors will claim that a connection into their system is
required to access their tick database, compiled datasets, and model param-
eters to be able to perform an analysis. While there may be some truth to
this necessity, it is, however, entirely possible to provide investors with
modeling capabilities and the market impact model equations without
requiring the investors to access the broker/vendor system.

A more likely scenario for why brokers are reluctant to provide the func-
tional form of their market impact and TCA models to investors is that
they do not want investors to be able to evaluate their models or critique
model performance.
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Portfolio managers and traders, on the other hand, are very concerned about
information leakage whenever they are required to enter a trade list or po-
tential portfolio into a broker system for analysis. For example, by loading
an upcoming trade into the broker system to perform a cost analysis, the
broker learns the managers trading intentions. If the portfolio manager in-
tends to use the broker for the trade that is fine, providing the broker
does not use this information begin to build an inventory position in the
stock to offset to the investor at a later point in time at a profit. But traders
and portfolio managers are very sensitive to this possibility. If the portfolio
manager uses one broker to analyze a trade but decides to use a different
broker to execute the trade, then the broker who performed the pretrade
analysis has information that could potentially be used to disadvantage
the investor either directly or indirectly. Additionally, portfolio managers
are unwilling to enter any information into a broker or vendor server or
trading system that could result in the broker or vendor potentially reverse
engineering the managers investment decision process.

In the sections below, we how to decode and reverse engineer broker-dealer
models for two different scenarios. In the first scenario, we show how inves-
tors can construct and calibrate their own market impact and TCA model
based on broker provided data, and thus decode and reverse engineer the
broker model and input factors. This is known as the pretrade of pretrade
techniques. In the second scenario, we show how any market impact model,
such as the I-Star model can be used to estimate the parameters required for
a portfolio optimization model.

PRE-TRADE OF PRE-TRADES
The pre-trade of pre-trade technique is based on the approach from the pa-
per “Creating Dynamic Pre-Trade Models: Beyond the Black Box” which
was awarded the Journal of Trading’s Best Paper of the Year Award in
2011 (Kissell, 2011). The research in that paper provided investors with a
pretrade modeling technique to decipher broker and vendor models, and al-
lows investors to calibrate their own customized market impact model and
as input into the KRG TCA Excel Add-In Suite.

This nice part about investors having their own TCA and market impact
models is that they can perform TCA analysis on their own desktops within
Excel, and with the added level of comfort knowing that there will not be
any information leakage due to accessing a third-party website or broker
API for analysis since all analyses are performed on the investors own sys-
tem. They do not have to access any outside party.
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I-Star Model Approach
The I-Star impact model from Kissell and Glantz (2003) and Kissell (2013)
will serve as the workhorse model in our pretrade of pretrade techniques.
The formulation of this model is as follows:

I�bp ¼ a1$Size
a2$sa3

MIbp ¼ b1$I
�$POVa4 þ ð1� b1Þ$I�

where,

I�bp ¼ Instantaneous market impact cost and represents the cost the
investor would incur if they released the entire order to the market for
execution at one time.
MIbp ¼Market impact cost of the order and is dependent upon the execu-
tion strategy, e.g., POV rate used to transact the shares. This formulation
of market impact cost also distinguishes between temporary impact due
to the liquidity needs of the fund and permanent market impact due to the
information content of the trade.
Size ¼ Order size expressed as shares to trade divided by the stock’s
average daily volume, expressed as a decimal.
s ¼ Annualized price volatility, expressed as a decimal, i.e., 20% is
expressed as 0.20.
POV ¼ Volume participation rate, i.e., shares to traded divided by the
volume in the trading period, expressed as a decimal.
a1 ¼ sensitivity to trade size, i.e., scaling factor.
a2 ¼ order shape parameter.
a3 ¼ volatility shape parameter.
a4 ¼ percentage of volume shape parameter, allows for higher level of
flexibility in an ever-changing market.
a5 ¼ price share parameter.
b1 ¼ percentage of temporary market impact, i.e., indication of the
liquidity cost component cost, with 0 � b1 � 1.
(1�b1) ¼ percentage of permanent market impact, i.e., indication of the
cost due to the information content of the trade, 0 � (1�b1) � 1.

A simplified version of this model that does not include the permanent and
temporary impact terms is expressed as follows:

I�bp ¼ a1$Size
a2$sa3$POVa4

In this formulation, investors can ascertain the necessary data set (cost, size,
volatility, and POV rate) from brokers and vendors through a sampling tech-
nique. For example, many brokers and vendors provide access to their pre-
trade models through websites, APIs, and OMS/EMS systems, and make it
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easy for investors to upload “sample” trade lists and receive broker TCA
cost estimates for their “sample” trade list. Since these are “sample” trade
lists and do not contain actual trading intentions or potential investment op-
portunities, investors do not have to be concerned about anyone reverse en-
gineering their valuable investment decision process because these
“sample” trade lists do not contain real information. Investors could also
provide brokers and vendors with sample trade lists, such as stocks in the
SP500 index and R2000 index, with different orders sizes and execution
POV rates for pretrade analysis. The TCA estimates received from this pro-
cess will serve as the LHS (e.g., y-values) of the estimation equation in the
regression model, and the stock order characteristics (Size, Volatility, and
POV rate) will serve as the RHS (e.g., x-values).

To best explain this process, we solicited market impact estimates for five
(5) different stocks. For each stock we solicited market impact estimates for
four different order sizes (1%, 5%, 10%, and 20%) and three different POV
rates (5%, 10%, and 20%). This results in 12 different data points for each
stock, and 60 data points in total for each broker. Finally, since we solicited
this information from five brokers we had a total of 300 data points for the
analysis. In practice, we recommend performing this analysis for a much
larger sample of stock such as the SP500 and R2000 universe combined,
and for a much larger range of orders sizes and POV rates. The information
received from this sampling exercise is provided in Table 16.1. Fig. 16.1 il-
lustrates the cost estimates by each of the five brokers for all 60 sample data
items. The figure provides the average broker cost and the 1-standard devi-
ation range of broker estimates.

An important item when using this technique to fit market impact models is
that the data obtained from an outside source, such as a broker or vendor,
may be biased for the broker’s specific customer mix, order characteristics,
and/or trading style. It is most appropriate to solicit cost estimates from mul-
tiple brokers and/or vendors to eliminate any broker or vendor customer
specific bias.

The pretrade of pretrades approach to estimate model parameters is as
follows:

Step I: Start with a simplified I-Star model:

MIbp ¼ a1$Size
a2$sa3$POVa4

Step II: Take a log transformation of the data.

LnðMIbpÞ ¼ a�1 þ a2$LnðSizeÞ þ a3$LnðsÞ þ a4$LnðPOVÞ
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Table 16.1 Trading Cost Estimates.

Obs Stock Size Volt. POV Broker A Broker B Broker C Broker D Broker E Avg Cost I-Star Cost NNet Cost

1 RLK-1 1% 20% 5% 6.7 6.9 7.3 11.0 4.1 7.2 7.4 8.0

2 RLK-1 1% 20% 10% 10.0 8.6 11.2 13.9 8.0 10.3 11.0 10.4
3 RLK-1 1% 20% 20% 18.0 15.8 19.3 23.0 10.1 17.3 16.3 17.8

4 RLK-1 5% 20% 5% 12.6 11.5 13.3 17.4 10.4 13.1 13.2 14.6

5 RLK-1 5% 20% 10% 19.9 23.8 22.5 25.4 18.7 22.1 19.6 18.6

6 RLK-1 5% 20% 20% 31.0 23.2 34.1 34.0 26.3 29.7 29.0 31.4

7 RLK-1 10% 20% 5% 15.3 14.6 17.7 22.8 14.8 17.0 16.9 18.0

8 RLK-1 10% 20% 10% 25.8 25.7 21.1 30.2 19.2 24.4 25.1 23.0

9 RLK-1 10% 20% 20% 33.5 30.6 41.3 46.6 33.8 37.2 37.2 39.0

10 RLK-1 20% 20% 5% 20.7 17.9 23.9 26.7 22.5 22.3 21.7 22.3
11 RLK-1 20% 20% 10% 30.7 22.6 38.3 36.7 33.4 32.4 32.2 32.5

12 RLK-1 20% 20% 20% 39.8 41.4 60.3 55.5 41.8 47.8 47.7 50.4

13 LM-2 1% 30% 5% 9.5 10.1 11.3 14.9 8.1 10.8 10.2 10.3

14 LM-2 1% 30% 10% 15.7 16.0 15.4 20.5 8.6 15.3 15.2 13.5

15 LM-2 1% 30% 20% 19.7 18.7 23.9 25.8 18.6 21.3 22.5 22.8

16 LM-2 5% 30% 5% 16.8 15.2 20.8 23.0 12.6 17.7 18.2 18.5

17 LM-2 5% 30% 10% 24.1 21.1 28.4 33.1 13.4 24.0 27.0 24.0

18 LM-2 5% 30% 20% 38.3 37.2 39.3 47.8 45.7 41.7 40.1 40.5
19 LM-2 10% 30% 5% 25.8 21.5 21.8 28.8 23.5 24.3 23.4 22.9

20 LM-2 10% 30% 10% 33.7 27.9 37.6 39.8 28.4 33.5 34.7 29.8

21 LM-2 10% 30% 20% 48.7 37.8 51.4 60.6 41.7 48.0 51.4 50.8

22 LM-2 20% 30% 5% 32.8 22.7 34.1 38.6 32.1 32.1 30.0 32.5

23 LM-2 20% 30% 10% 40.1 42.4 43.7 47.1 37.1 42.1 44.5 40.2

24 LM-2 20% 30% 20% 60.2 60.8 84.2 71.3 48.6 65.0 65.9 63.5

25 MR-3 1% 40% 5% 16.1 13.0 12.7 18.4 10.8 14.2 12.9 13.4

26 MR-3 1% 40% 10% 22.0 16.8 17.3 22.0 14.5 18.5 19.1 17.5
27 MR-3 1% 40% 20% 32.2 31.6 23.7 37.4 25.0 30.0 28.3 28.5

28 MR-3 5% 40% 5% 23.2 12.4 22.0 27.4 20.0 21.0 23.0 24.0

29 MR-3 5% 40% 10% 35.3 32.2 33.3 34.6 24.4 32.0 34.0 31.2

30 MR-3 5% 40% 20% 61.5 44.1 49.2 62.8 57.5 55.0 50.4 51.3

31 MR-3 10% 40% 5% 27.2 22.9 28.2 39.5 27.3 29.0 29.4 29.8

32 MR-3 10% 40% 10% 45.9 36.5 48.8 48.8 32.9 42.6 43.6 39.0
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Table 16.1 Trading Cost Estimates. Continued

Obs Stock Size Volt. POV Broker A Broker B Broker C Broker D Broker E Avg Cost I-Star Cost NNet Cost

33 MR-3 10% 40% 20% 64.2 43.1 71.0 67.1 62.9 61.7 64.6 65.3

34 MR-3 20% 40% 5% 40.6 39.1 37.1 50.0 31.4 39.6 37.8 40.1
35 MR-3 20% 40% 10% 56.7 46.4 65.0 62.8 46.0 55.4 56.0 50.3

36 MR-3 20% 40% 20% 79.9 81.8 78.9 85.6 58.7 77.0 82.9 79.3

37 ABC-4 1% 40% 5% 11.9 10.7 12.4 16.4 10.7 12.4 12.9 13.4

38 ABC-4 1% 40% 10% 19.5 17.9 17.0 24.5 11.4 18.0 19.1 17.5

39 ABC-4 1% 40% 20% 31.0 30.0 27.3 35.1 15.4 27.8 28.3 28.5

40 ABC-4 5% 40% 5% 25.5 14.2 22.3 30.3 27.0 23.9 23.0 24.0

41 ABC-4 5% 40% 10% 36.3 25.9 33.0 40.0 33.1 33.7 34.0 31.2

42 ABC-4 5% 40% 20% 55.3 41.6 49.5 60.4 38.4 49.0 50.4 51.3
43 ABC-4 10% 40% 5% 24.6 19.1 28.9 39.8 26.3 27.7 29.4 29.8

44 ABC-4 10% 40% 10% 38.7 32.4 42.1 46.1 41.9 40.2 43.6 39.0

45 ABC-4 10% 40% 20% 61.3 72.0 84.7 76.2 45.6 67.9 64.6 65.3

46 ABC-4 20% 40% 5% 36.7 33.8 40.4 45.7 45.5 40.4 37.8 40.1

47 ABC-4 20% 40% 10% 48.7 40.5 53.1 64.4 41.4 49.6 56.0 50.3

48 ABC-4 20% 40% 20% 96.8 76.2 77.1 92.5 58.5 80.2 82.9 79.3

49 XYZ-5 1% 50% 5% 17.7 13.6 17.7 21.2 12.9 16.6 15.4 17.4

50 XYZ-5 1% 50% 10% 21.7 19.2 24.8 33.0 13.8 22.5 22.8 22.5
51 XYZ-5 1% 50% 20% 35.2 37.0 36.1 45.1 17.3 34.1 33.8 34.5

52 XYZ-5 5% 50% 5% 28.8 23.5 28.6 33.8 22.1 27.4 27.4 31.1

53 XYZ-5 5% 50% 10% 46.7 37.3 38.9 49.3 37.9 42.0 40.7 40.2

54 XYZ-5 5% 50% 20% 68.2 47.0 60.9 68.8 67.4 62.5 60.2 63.3

55 XYZ-5 10% 50% 5% 36.6 25.2 34.9 43.5 37.4 35.5 35.2 38.9

56 XYZ-5 10% 50% 10% 54.0 55.9 48.9 57.5 45.9 52.4 52.1 50.7

57 XYZ-5 10% 50% 20% 78.6 89.5 82.3 79.8 113.2 88.7 77.3 88.4
58 XYZ-5 20% 50% 5% 59.4 30.2 47.1 52.7 30.3 43.9 45.1 50.3

59 XYZ-5 20% 50% 10% 53.4 64.8 63.5 72.8 76.6 66.2 66.9 63.4

60 XYZ-5 20% 50% 20% 99.2 93.6 114.4 92.7 88.5 97.7 99.1 97.4
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It is important to note that we can perform a log transformation of the
data because all the x-input variables (RHS) and the market impact
cost (LHS) are positive. If any of these variables are negative we would
not be able to directly transform the data using logs and would need to
use an alternative transformation technique. In situations where the LHS
trade cost is calculated using order data or using customer data and is
negative, we use grouping techniques and compute the average cost. If
the data set is sufficient large, the trade cost estimate in each category
group will be positive, thus, allowing a log transformation of the data
to take place.

Step III: Run OLS regression to estimate the parameters for the log trans-
formed data. The results for log transformed model using all the data in
Table 16.1 is:

Log-Linear Regression

a1* a2 a3 a4

Est Coeff 6.620 0.359 0.799 0.567

Se(Coeff) 0.069 0.010 0.036 0.020

R2/SeY 0.893 0.199 #N/A #N/A

F/df 825.220 296.000 #N/A #N/A

SSR/SSE 97.715 11.683 #N/A #N/A

t-tstat 96.589 34.780 21.975 27.984
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This regression has a very high goodness of fit with R2 ¼ 0.893, relatively
small regression standard error SeY ¼ 0.199, and significant T-Stat and F-
Stat.

Step IV: Transform the log transformed model to the power function I-
Star model and estimate market impact as follows:

Est: MIbp ¼ 765:22$Size0:359$s0:799$POV0:567

Please note that the constant term a1for a log-normal model is calculated
as follows:

a1 ¼ ea
�
1þ0:5$SeY2 ¼ e6:620þ0:5$0:1992 ¼ 765:22

Step V: Evaluate the performance of the power function model. This is
accomplished be running a second regression where we estimate Actual
MI Cost as function of Estimated MI Cost following techniques dis-
cussed in our chapter on nonlinear regression analysis. This is:

MIbp ¼ d0 þ d1$Est MI

If the unadjusted model is a statistical predictor actual market impact
cost, we would expect d0 ¼ 0 and d1 ¼ 1. The results from this second
regression using all the data is:

This regression model shows that statistically we have d0 ¼ 0 and d1 ¼ 1,
and a high goodness of fit R2 ¼ 0.839 and low regression error
SeY ¼ 7.001bp.

I-Star Performance Results

d0 d2

Est Coeff 0.184 0.992

Se(Coeff) 0.839 0.020

R2/SeY 0.892 7.001

F/df 2449.576 298.000

SSR/SSE 120,054.39 14,605.06

t-tstat 0.220 49.493
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As part of our analysis, we ran a regression to fit the simplified I-Star model
to the data for each broker individually, and for all five of the brokers. This
information provides both an individual broker model and a universe
model. The individual broker model is the I-Star model that decodes the
broker market impact model. The model calibrated using all data is the
preferred model.

The results from the individual broker models is shown in Table 16.2. The
columns showing the log-linear regression results are computed using the
log transformed data for each broker. The column showing the I-Star perfor-
mance results shows the results for the second regression where we estimate
Actual MI as a function of Estimated MI. For all five brokers we have sta-
tistically d0 ¼ 0 and d1 ¼ 1 indicating a proper model. The results from
the full dataset model is shown in Table 16.3.

It is important to note that analysts can use any version of the I-Star model
to perform this pretrade of pretrade techniques. For example, we can formu-
late I-Star with an additional price term as follows:

MIbp ¼ a1$Size
a2$sa3$POVa4$Pricea5

or for an additional market cap term as follows:

MIbp ¼ a1$Size
a2$sa3$POVa4$MktCapa6

or with both as follows:

MIbp ¼ a1$Size
a2$sa3$POVa4$Pricea5$MktCapa6

It is also possible to calibrate a pretrade model that incorporates
the permanent and temporary impact terms. The full I-Star model, unfortu-
nately, is not able to be solved using a log transformation. Analysts using
the full model will need to use nonlinear regression solution techniques.

Neural Network Model Approach
An alternative approach to perform our pretrade of pretrade analysis is use
machine learning and a neural network model to fit the broker data. A neu-
ral network approach has an advantage over the simplified I-Star model in
that it does not force any relationship between costs and the underlying
explanatory factors. Thus, providing more flexibility to fit the broker
models. A disadvantage of the neural network model is that it does not
allow easy interpretation of the data or means to determine a direct relation-
ship between the data and market impact cost.
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Table 16.2 Broker Cost Estimates.
Log-Linear Regression I-Star Performance Results NNet Performance Results

a1* a2 a3 a4 d0 d1 b0 b1

Broker A: Cost Estimates

Est coeff 6.709 0.340 0.909 0.568 Est coeff 0.426 0.987 Est coeff �0.003 1.000

Se(Coeff) 0.076 0.011 0.040 0.022 Se(Coeff) 1.137 0.027 Se(Coeff) 1.104 0.026

R2/SeY 0.973 0.099 #N/A #N/A R2/SeY 0.959 4.269 R2/SeY 0.962 4.112

F/df 676.070 56.000 #N/A #N/A F/df 1351.924 58.000 F/df 1461.624 58.000

SSR/SSE 19.691 0.544 #N/A #N/A SSR/SSE 24,642.757 1057.219 SSR/SSE 24,718.477 980.876

t-tstat 88.267 29.674 22.550 25.282 t-tstat 0.375 36.769 t-tstat �0.003 38.231

Broker B: Cost Estimates

Est coeff 6.583 0.326 0.788 0.651 Est coeff �1.880 1.063 Est coeff �0.002 1.000

se(Coeff) 0.119 0.018 0.063 0.035 Se(Coeff) 1.457 0.039 Se(Coeff) 1.406 0.037

R2/SeY 0.937 0.154 #N/A #N/A R2/SeY 0.926 5.511 R2/SeY 0.925 5.546

F/df 277.820 56.000 #N/A #N/A F/df 728.040 58.000 F/df 718.108 58.000

SSR/SSE 19.724 1.325 #N/A #N/A SSR/SSE 22,113.816 1761.718 SSR/SSE 22,091.282 1784.265

t-tstat 55.474 18.246 12.523 18.539 t-tstat �1.291 26.982 t-tstat �0.002 26.798

Broker C: Cost Estimates

Est coeff 6.689 0.375 0.715 0.594 Est coeff �0.694 1.020 Est coeff 0.000 1.000

se(Coeff) 0.071 0.011 0.037 0.021 Se(Coeff) 1.184 0.027 Se(Coeff) 1.107 0.025

R2/SeY 0.977 #N/A #N/A #N/A R2/SeY 0.961 4.477 R2/SeY 0.965 4.249

F/df 803.900 #N/A #N/A #N/A F/df 1419.411 58.000 F/df 1582.374 58.000

SSR/SSE 20.248 #N/A #N/A #N/A SSR/SSE 28,446.668 1162.388 SSR/SSE 28,562.596 1046.927

t-tstat 94.629 35.228 19.082 28.400 t-tstat �0.586 37.675 t-tstat 0.000 39.779

Broker D: Cost estimates

Est coeff 6.423 0.308 0.723 0.488 Est coeff 1.032 0.974 Est coeff 0.000 1.000

Se(Coeff) 0.048 0.007 0.025 0.014 Se(Coeff) 0.851 0.018 Se(Coeff) 0.864 0.018

R2/SeY 0.985 #N/A #N/A #N/A R2/SeY 0.981 2.844 R2/SeY 0.981 2.830

F/df 1262.872 #N/A #N/A #N/A F/df 2973.803 58.000 F/df 3003.058 58.000

SSR/SSE 14.717 #N/A #N/A #N/A SSR/SSE 24,049.466 469.052 SSR/SSE 24,055.498 464.599

t-tstat 133.580 42.496 28.349 34.337 t-tstat 1.213 54.533 t-tstat 0.000 54.800

Broker E: Cost Estimates

Est coeff 6.697 0.447 0.858 0.535 Est coeff 0.956 0.968 Est coeff 0.007 1.000

Se(Coeff) 0.157 0.024 0.083 0.047 Se(Coeff) 2.288 0.061 Se(Coeff) 1.779 0.047

R2/SeY 0.914 #N/A #N/A #N/A R2/SeY 0.814 9.158 R2/SeY 0.886 7.185

F/df 197.985 #N/A #N/A #N/A F/df 254.403 58.000 F/df 449.517 58.000

SSR/SSE 24.682 #N/A #N/A #N/A SSR/SSE 21,336.848 4864.468 SSR/SSE 23,206.771 2994.311

t-tstat 42.588 18.856 10.294 11.509 t-tstat 0.418 15.950 t-tstat 0.004 21.202
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Table 16.3 Regression Analysis using All Broker MI Data.

Log-Linear Regression I-star Performance Results NNet Performance Results

a1* a2 a3 a4 d0 d1 b0 b1

Est coeff 6.620 0.359 0.799 0.567 Est coeff 0.184 0.992 Est coeff 0.000 1.000

Se(Coeff) 0.069 0.010 0.036 0.020 Se(Coeff) 0.839 0.020 Se(Coeff) 0.827 0.020
R2/SeY 0.893 0.199 #N/A #N/A R2/SeY 0.892 7.001 R2/SeY 0.895 6.890

F/df 825.220 296.000 #N/A #N/A F/df 2449.576 298.000 F/df 2538.697 298.000

SSR/SSE 97.715 11.683 #N/A #N/A SSR/SSE 1,20,054.39 14,605.06 SSR/SSE 1,20,514.500 14,146.360

t-tstat 96.589 34.780 21.975 27.984 t-tstat 0.220 49.493 t-tstat 0.000 50.385
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We use a neural network (NNET) consisting of two hidden layers and two
nodes in each layer. The layout of this NNET structure is shown in
Fig. 16.2. It is important to note that we use the same RHS input variables:
Size, Volatility, and POV rate, and the same LHS market impact cost (pro-
vided by brokers) for the neural network approach as we did with the simpli-
fied I-Star model.

The results for the NNET model for all brokers is provided on the right-
hand side in Table 16.2. Notice that these results are slightly improved
over the I-Star model results with a slightly higher goodness of fit and
slightly lower regression standard error for each broker. The NNET model
results for all the data is shown on the right had side of Table 16.3. Again,
notice that the NNET slightly outperforms the I-Star model.

A comparison of the cost estimates for the I-Star model and NNET model
compared to the average cost estimate across all brokers is provided in
Fig. 16.3. Notice that the cost estimates from these three approaches is
very difficult to distinguish.

A natural question that arises, hence, is that if the average cost across bro-
kers provides a reasonable estimate of the expected market impact cost why
would we need to go through all the steps to calibrate our own model? This
answer is quite simple. Having an accurate model allows analysts to
perform numerous what-if analyses and model scenarios and situations
where they do not have broker data or a sufficient set of broker data. Having
a model in equation form also allows analysts to combine this model with
other models and perform more sophisticated portfolio optimization
techniques.

PORTFOLIO OPTIMIZATION
A growing trend in portfolio management is the incorporation of trading
costs into portfolio optimization. In these scenarios, portfolio managers
optimize the trade-off between portfolio risk and expected net return as

x1: Shares

x3: POV

x2: Volatility
y: Cost

n FIGURE 16.2 Neural Network Structure.
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opposed to expected return. Here, net return is calculated as the difference
between expected return and market impact cost. To accommodate this
need, portfolio optimizers allow an additional input equation to calculate
the expected market impact cost of an order.

A common portfolio optimization formulation to estimated market impact
costs in $/share as a function of shares to trade S is:

Costð$ = ShareÞ ¼ b0 þ b1Sþ b2S
2 þ b3S

1=2

This is a fractional linear regression model with a single input variable S
with multiple exponents.

A common portfolio optimization formulation to estimate market impact
cost in total dollars $ as a function of trade value V is:

Costð$Þ ¼ b0 þ b1V þ b2S
2 þ b3S

1=2 þ b3S
3=2 þ b3S

5=3

This is a fractional linear regression model with a single input variable V
with multiple exponents.

Model Usage. To use these cost models in the portfolio optimization phase,
analysts need stock specific market impact model parameters. This requires
analysts to maintain a database of MI parameters for a complete universe
of stock in the same manner that they need to maintain a complete universe
of stock specific risk exposures and factors to construct covariance
matrices.
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Vendors and brokers who provide portfolio optimization systems will also
provide stock specific market impact parameters. But these market impact
parameters and estimates have issues and limitations:

n The universe of market impact parameters for portfolio optimization is
often an additional add-on expense for the investor. Vendors and brokers
will likely charge a fee to gain access to their data. In some situations,
brokers may wave this data fee, but if so, they will usually require the
portfolio manager to trade a specified quantity of volume through their
trading desk. Thus, the net result to the investor is that the market impact
parameters are not free.

n Market impact estimates provided by vendor and broker for this cost
formulation may be different than the cost estimates used by portfolio
managers during their back-testing and as input into other portfolio man-
agement analyses.

n Market Impact model parameters supplied by vendor and broker are sub-
ject to the same limitations and deficiencies encountered from a broker
model where the model parameters are calibrated from a broker specific
universe which may not be representative of the costs incurred by the
portfolio manager.

n Market impact parameters used in these models are not dependent upon
trading strategy. That is, these models will provide the same cost esti-
mate for a portfolio manager who normally trades via a passive
VWAP strategy and for a portfolio manager who normally trades via
an aggressive POV ¼ 30% strategy.

n Incorrect usage of these market impact estimates could lead portfolio
managers to make incorrect investment decisions. For example, it is
possible for an optimized strategy to have a high expected profit, but af-
ter implementing that trade, the strategy may only be moderately profit-
able, or worse, may incur a loss. Furthermore, the optimized strategy
may show an expected loss when in reality the strategy could be highly
profitable. But in this case, the portfolio manager would never act on the
strategy (Because of the expected loss) and the manager would never
have the opportunity to realize the gain from this strategy.

There are many issues that can go wrong when a portfolio manager uses
incorrect market impact parameters, or uses market impact parameters
that are not consistent with their trading strategy as input into the portfolio
optimizer.
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What Should the Portfolio Manager Do?
Portfolio managers can address these issues by furnishing their own market
impact parameters into the portfolio optimizer. In this case, the portfolio
manager can use similar techniques from above and derive a customized
set of stock specific model parameters for each stock in the data universe.
These cost estimates will be customized for the exact trading strategy of
the portfolio manager, and the portfolio manager will not incur an additional
cost or be required to trade a specified number of shares with the broker.
The portfolio manager would then perform regression OLS regression anal-
ysis to estimate the market impact parameters for the cost model.

This approach is as follows:

Step I: Select Stock
Step II: Calculate market impact for a range of order sizes, e.g., sizes
from 0% ADV to 100% ADV, or from 0% ADV to 25% ADV. For
increased precision, we increment the order size by increments of
0.25% (0.0025). It is important to calibrate the mode parameters using
a range of potential realistic order sizes. If the manager will only transact
order sizes less than 25% ADV the parameters should be calibrated using
a range from 0% to just slightly larger than 25% ADV such as 35% ADV
to provide some flexibility. Analysts can use the I-Star model to generate
these costs or another market impact model. These cost estimates will
serve as the left-hand side dependent variable.
Step III: Calculate right-hand side input variables. This model will be the
fractional polynomial model shown above and the input variables will
either be expressed in terms of Shares or Trade Value.
Step IV: Perform OLS regression model on the generated data set. The
parameter results from the OLS regression model will then be the stock
specific parameters for the cost model used in the portfolio optimization
model.

Deriving Portfolio Optimization Market Impact
Models
In the following two examples, we show how to estimate the market impact
model parameters for stock RLK using the I-Star model.

The I-Star Model is:

I�bp ¼ a1$Size
a2$sa3

MIbp ¼ b1$I
�$POVa4 þ ð1� b1Þ$I�
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Use the following model parameters:

a1 ¼ 925; a2 ¼ 0:35; a3 ¼ 0:85; a4 ¼ 0:70 and b1 ¼ 0:96

Stock RLK has the following characteristics:

ADV ¼ 1; 000; 000

Volatility ¼ 0:25

Price ¼ $50:00

Trade Strategy:

n We calibrate the model for two different trading strategies: 1-Day
VWAP and POV ¼ 20%.

n We calibrate the model for two different order size ranges: 0%e100%
ADV, and 0%e25% ADV.

n Analysts and portfolio managers can use this approach to calibrate the
model parameters for their preferred trading strategy (e.g., POV rate),
and order size range.

Example: Share Quantity Regression Model
In this example, we use the market impact portfolio optimization model that
expresses cost in $/share and with shares S as the input variable. This model
has form:

Costð$ = ShareÞ ¼ b0 þ b1Sþ b2S
2 þ b3S

1=2

We start off by generating costs using the I-Star model and model param-
eters from above. Cost are calculated for two different trading strategies.
The first is a 1-day VWAP strategy and the second is a POV ¼ 20% strat-
egy. Portfolio managers need to ensure that they calibrate model parameters
for their preferred strategy.

The LHS Costs in $/share are computed from cost in basis points as follows:

Costð$ = ShareÞ ¼ CostðbpÞ$10�4$Price

The RHS shares quantity (input variable) is computed from the order size as
follows:

Shares ¼ Size$ADV
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We generated cost data for order sizes from 0% to 100% ADV (by 0.25%
ADV increments). This results in 401 data points for stock RLK. In total,
we performed four (4) different regressions:

1. VWAP Strategy, Size from 0% ADV to 100% ADV
2. VWAP Strategy, Size from 0% ADV to 25% ADV
3. POV ¼ 20% Strategy, Size from 0% ADV to 100% ADV
4. POV ¼ 20% Strategy, Size from 0% ADV to 25% ADV

The results of these regression analyses are shown in Table 16.4a. Each of
these regressions resulted in a model with a very high goodness of fit, e.g.,
R2 > 0.99, statistically significant T-Stats and F-Stats, and small regression
error. Table 16.4b provides a comparison of the regression model coeffi-
cients for the model using size from 0% to 100% ADV and from 0% to
25% ADV. Notice that these parameters are different for each regression.
This is because we are solving for a different trading strategy or for a
different range of order sizes. But all four of the scenarios have significant
factors and a high R2 and small standard error.

Fig. 16.4A shows the error between the I-Star impact cost (y-variable) and
the estimated cost from the regression (by � variable) for the VWAP strat-
egy. Notice that the error for the full data range from 0% �100% ADV is
small and constant across all order sizes. But the largest error for the regres-
sion occurs at the smallest order sizes in the graph. The error for the shorter
x-input range from 0% ADVd25% ADV results in the smallest error for
these smaller order sizes, but this error term increase dramatically for the
larger order sizes. Please note that they R2 statistics for this model is only
computed for the range 0%e25%.

The important take away from this analysis is that portfolio managers who
are going to implement their investment decision using a VWAP strategy
are best served if they calibrate the cost model parameters using an x-
input range that is consistent with their holding size. For example, if the
manager will only hold small positions in their portfolio and only execute
small orders (e.g., order size �0.25) then they should calibrate the model
using our regression analysis and an input range from 0% to 25%. If the
manager is liable to hold very large positions sizes and may execute very
large orders, then they should calibrate the model using a large range of
x-variable order sizes.

Portfolio managers using our market impact parameter estimation tech-
niques, can use an iterative process where they first optimize a portfolio us-
ing a cost model calibrated with a full range of data to arrive at the optimal
portfolio. Then, depending on the trade size of each order, estimate new
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Table 16.4a Share Quantity Regression Results.

VWAP Strategy POV [ 20% Strategy

b0 b1 b2 b3 b0 b1 b2 b3

Regression: ADV Range 0%e100% & VWAP Regression: ADV Range 0%e100% & POV ¼ 20%

Est Coeff �0.0069 9.9059 0.0002 �2.5233 Est Coeff 0.0316 �2.9905 0.0007 7.4221

Se(Coeff) 0.0006 4.5468 3.2249 2.0752 Se(Coeff) 0.0009 6.5001 4.6101 2.9666

R2/SeY 0.9999 0.0014 #N/A #N/A R2/SeY 0.9997 0.0019 #N/A #N/A

F/df 4533147.9509 397 #N/A #N/A F/df 349131.4036 397 #N/A #N/A

SSR/SSE 25.6615 0.0007 #N/A #N/A SSR/SSE 4.0392 0.0015 #N/A #N/A

t-tstat �11.7977 217.8622 50.7432 �121.5965 t-tstat 37.8899 �46.0069 150.7777 25.0184

Regression: ADV Range 0%e25% & VWAP Regression: ADV Range 0%e25% & POV ¼ 20%

Est Coeff 0.0017 1.1472 8.4102 �3.6226 Est Coeff 0.0121 �9.3296 0.0009 1.0404

Se(Coeff) 0.0001 6.2443 2.1514 1.1875 Se(Coeff) 0.00132 4.3509 1.4990 8.2746

R2/SeY 0.9999 0.0002 #N/A #N/A R2/SeY 0.9991 0.0018 #N/A #N/A
F/df 3570474.4170 96 #N/A #N/A F/df 39900.8206 96 #N/A #N/A

SSR/SSE 0.7438 6.6665 #N/A #N/A SSR/SSE 0.4035 0.0003 #N/A #N/A

t-tstat 9.1586 183.7215 39.0914 �30.5050 t-tstat 9.1371 �21.4427 62.1642 12.5733
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market impact parameters based on x-input data consistent with the order
size. Thus, if the optimized trade size is 12% ADV, then reestimate the mar-
ket impact parameters using x-data input sizes from 10% ADV to 15%
ADV to determine the best fit model in this input region. Then repeat
this iteration process until the change in trade list from one iteration to
the next is less than a specified tolerance quantity such as 100 shares or
one shares (if extreme precision is required). Please note that it is not
possible to employ this iterative technique is depending on vendor or broker
cost models because these parameter values to not change. This is only a
viable iterative process for managers who are using our market impact
parameter estimation technique to fine tune the market impact regression
parameters after each iteration.

Fig. 16.4B shows the error between the I-Star impact cost (y-variable) and the
estimated cost from the regression (by � variable) for the POV ¼ 20% strat-
egy. Notice that the error for the full data range from 0% to 100% ADV is
small and constant across all order sizes. The error for the shorter x-input
range from 0% ADVd 25% ADV results in a small error through about
25% and then begins to increase. Trading via a POV rate results in a smaller
error than the VWAP strategy. Furthermore, this analysis shows that portfolio
managers executing via a POV strategy can simply use market impact param-
eters that are calibrated using the full range of order sizes 0%e100%. But
portfolio managers may want to utilize our iterative process in this case to
fine tune the results and achieve the maximum level of alpha possible.

Share Regression Example - Key Points:

n Our market impact model calibration approach provides investors with
very good estimates of market impact cost and a high level of statistical
accuracy.

Table 16.4b Share Quantity Regression Results.

Range b0 b1 b2 b3

VWAP Strategy: Regression Coefficients

0%e100% ADV �0.0069 9.9058 0.0001 �2.5233

0%e25% ADV 0.0017 1.1472 8.4102 �3.6226

POV ¼ 20% Strategy: Regression Coefficients

0%e100% ADV 0.0316 �2.9904 0.0006 7.4221

0%e25% ADV 0.0121 �9.3296 0.0009 1.0403
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n Investors who implement trades via a VWAP strategy will be best served
by estimating the cost regression parameters using an input range of or-
der sizes that are consistent with the portfolio holding order size.

n Portfolio managers who trade via a POV strategy can calibrate their
regression models using a full x-input range of data, e.g., 0%e100%,
without the worry of increased error. They do not need to segment the
model parameters to be consistent with the portfolio holding order size
like they do if they trade with a VWAP strategy.

n Utilizing an iterative market impact calibration approach provides oppor-
tunity to fine tune the model inputs and improve optimization results.
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Example: Trade Value Regression Model
In this example, we use the market impact portfolio optimization model that
expresses cost in total dollars $ and with trade value V as the input variable.
This model has form:

Costð$Þ ¼ b0 þ b1V þ b2V þ b3V
1=2 þ b4V

3=2 þ b5V
5=3

Notice that this model is slightly different than the previous model was
costs in dollars/share is estimated based on share quantity and includes
additional x-input factors. The estimate process, however, is the same as
above.

The LHS Costs in $ are computed from cost in basis points as follows:

Costð$Þ ¼ CostðbpÞ$10�4$Shares$Price

The RHS shares quantity (input variable) is computed from the order size as
follows:

Value ¼ Size$ADV$Price

Generated cost data for order sizes from 0% to 100% ADV (by 0.25% ADV
increments). This results in 401 data points for stock RLK. In total, we per-
formed four (4) different regressions:

1. VWAP Strategy, Size from 0% ADV to 100% ADV
2. VWAP Strategy, Size from 0% ADV to 25% ADV
3. POV ¼ 20% Strategy, Size from 0% ADV to 100% ADV
4. POV ¼ 20% Strategy, Size from 0% ADV to 25% ADV

The results of these regression analyses are shown in Table 16.5a. Each of
these regressions resulted in a model with a very high goodness of fit, e.g.,
R2 > 0.99, statistically significant T-Stats and F-Stats, and small regression
error. Table 16.5b provides a comparison of the regression model coeffi-
cients for the model using size from 0% to 100% ADV and from 0% to
25% ADV. Similar to the previous example, these parameters are different
for each regression because we are solving for a different trading strategy
or for a different range of order sizes. But all four of the scenarios have sig-
nificant factors and a high R2 and small standard error.

Fig. 16.5A shows the error between the I-Star impact cost (y-variable) and
the estimated cost from the regression (by � variable) for the VWAP strat-
egy. Notice that the error for the full data range from 0% to 100% ADV
is small and constant across all order sizes. The error for the smaller input
range from 0% ADVd 25% ADV results in slightly smaller error through
about 30%e35% ADV and then the error increases.
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Table 16.5a Trade Value Regression Results.

VWAP Strategy POV [ 20% Strategy

b0 b1 b2 b3 b4 b5 b0 b1 b2 b3 b4 b5

Regression: ADV Range 0%e100% Regression: ADV Range 0%e100%

Est Coeff 113.2767 0.0038 �5.0419 �11.1938 �9.3663 7.7829 32.1711 0.0008 2.7085 �2.0781 2.5895 �7.7553

Se(Coeff) 22.8889 3.2473 1.3298 0.4019 3.3732 2.0260 3.8457 5.4561 2.2344 0.0675 5.6676 3.4040

R2/SeY 0.9999 25.3320 #N/A #N/A #N/A #N/A 0.9999 4.2562 #N/A #N/A #N/A #N/A

F/df 9304643002.9743 395 #N/A #N/A #N/A #N/A 99133104730.2914 395 #N/A #N/A #N/A #N/A

SSR/SSE 29854483546923.7 253476.0548 #N/A #N/A #N/A #N/A 8979251920754.97 7155.6409 #N/A #N/A #N/A #N/A

t-tstat 4.9489 118.6020 �379.1245 �27.849 �277.6638 384.1513 8.3653 160.0355 121.2201 �30.7714 456.8941 �227.8266

Regression: ADV Range 0%e25% Regression: ADV Range 0%e25%

Est Coeff 7.2718 0.00139 �1.4064 �2.3215 �4.3887 4.0982 0.8368 0.0005 6.7123 �0.4297 3.1970 �1.2087

Se(Coeff) 5.7440 4.9386 8.9146 0.1891 1.0946 8.3925 0.6169 5.3042 9.5745 0.0203 1.1756 9.0138

R2/SeY 0.9999 5.8050 #N/A #N/A #N/A #N/A 0.9999 0.6234 #N/A #N/A #N/A #N/A

F/df 325182760.1604 95 #N/A #N/A #N/A #N/A 27940301152.0566 95 #N/A #N/A #N/A #N/A

SSR/SSE 54791370359.48 3201.3875 #N/A #N/A #N/A #N/A 54305559185.0108 36.9289 #N/A #N/A #N/A #N/A

t-tstat 1.2659 28.3257 �15.7772 �12.2758 �40.0925 48.8322 1.3564 99.9646 70.1066 �21.1580 271.9311 �134.0974



Table 16.5b Trade Value Regression Results.

Range b0 b1 b2 b3 b4 b5

VWAP Strategy: Regression Coefficients

0%e100% ADV 113.2768 0.0038 �5.0419 �11.1938 �9.3663 7.7829

0%e25% ADV 7.2719 0.0014 �1.4064 �2.3216 �4.3888 4.0982

POV ¼ 20% Strategy: Regression Coefficients

0%e100% ADV 32.1711 0.0008 2.7085 �2.0781 2.5895 �7.7553

0%e25% ADV 0.8368 0.0005 6.7123 �0.4297 3.19709 �1.2087
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The important take away from this analysis is that portfolio managers who
are going to implement their investment decision using a VWAP strategy
can calibrate their cost model parameters across a full x-input range.

Fig. 16.5B shows similar results for the POV ¼ 20% strategy. Notice
that the error for the full data range from 0% to 100% ADV is small and
constant across all order sizes. The error for the smaller x-input range
from 0% ADVd 25% ADV results in a slightly smaller error through
about 30%e35% ADV and then the error increases.

The important take away from this analysis is that portfolio managers who
are going to implement their investment decision using a POV strategy can
calibrate their cost model parameters across a full x-input range.

Trade Value Regression: Key Points:

n Our market impact model calibration approach provides investors with
very good estimates of market impact cost and a high level of statistical
accuracy.

n Investors who implement trades via a VWAP strategy will be best
served by estimating the cost regression parameters over the entire
range of order sizes, e.g., 0%e100% ADV. This is different than the
results found using the share quantity regression where investors were
best served by using a smaller x-input range that is consistent with the
portfolio holding order size.

n Investors who implement their trades using a POV strategy can cali-
brate their regression models using a full x-input range of data, e.g.,
0%e100%, without the worry of increased error.

n Utilizing an iterative market impact calibration approach provides oppor-
tunity to fine tune the model inputs and improve optimization results.
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Chapter17
Portfolio Construction with Transaction

Cost Analysis

INTRODUCTION
This chapter introduces techniques to bridge the gap between portfolio con-
struction and trading. We introduce a quantitative framework to determine
the appropriate “optimal” execution strategy given the “optimal” portfolio
on the efficient investment frontier (EIF).

Portfolio optimization is the process of determining an optimum mix of
financial instruments. These consist of portfolios with the highest return
for a specified level of risk and the least risk for a specified return. These
optimal portfolios are determined through advanced mathematical modeling
approaches such as quadratic programming, and more recently conic
optimization.

Markowitz (1952) presented a quantitative process to construct efficient
portfolios through optimization. The set of all efficient portfolios constitutes
what Markowitz coined the efficient frontier. Sharpe (1964) expanded on
the efficient frontier concept by providing investors with a means to deter-
mine the most appropriate efficient portfolio on the frontier. The technique
used by Sharpe was based on maximizing investor economic utility
(investor happiness). Sharpe further introduced the industry to the capital
asset pricing model (CAPM), which in the simplest forms is a technique
to combine the market portfolio with a risk-free asset to further improve
the set of riskereturns above the efficient frontier. CAPM also provided
the industry with metrics to quantify and manage risk, allocate investment
dollars, etc. This groundbreaking work by Markowitz and Sharpe paved the
way for Roll and Ross (1980) with arbitrage pricing theory, Black and Lit-
terman (1992) with alternative portfolio optimization techniques, Fama and
French (1992, 1993) with their three-factor model, and Michaud &Michaud
(1998) with their portfolio resampling using Monte Carlo methods. Unfor-
tunately, not as much attention has been given to portfolio construction with
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transaction costs. But as we show in this chapter, Markowitz and Sharpe
have also paved the way to determine the most appropriate best execution
strategy given the investment objectives of the fund.

The underlying goal of this chapter is to provide necessary theory and math-
ematical framework to properly incorporate transaction costs into portfolio
optimization. This chapter builds on the findings from “Investing and
Trading Consistency: Does VWAP Compromise the Stock Selection Pro-
cess?” by Kissell andand Malaut in the Journal of Trading, Fall, 2007).
We expand on those concepts by providing the necessary mathematical
models and quantitative framework. The process is reinforced with graphical
illustrations.1

PORTFOLIO OPTIMIZATION AND CONSTRAINTS
Many quantitative portfolio managers construct their preferred investment
portfolios following the techniques introduced by Markowitz (1952) and
Sharpe (1964). But often during the optimization process these managers
will incorporate certain constraints into the process. These constraints are
used by managers for many different reasons and in many different ways.
For example, to reflect certain views or needs, to provide an additional layer
of safety, or to ensure the results provide more realistic expectations. Some
of the more common reasons for incorporating constraints into portfolio
optimization are:

n Fund mandates
n Maximum number of names
n Reflect future views
n Risk management
n Transaction cost management

Fund mandates. Many funds have specified guidelines for their portfolios.
Optimization constraints are used to ensure the resulting optimal mix ad-
heres to these strategies. For example, these may specify a predetermined
asset allocation process that requires a certain percentage to be invested
across stocks, bonds, cash, etc. These mandates may also define a

1We would like to thank the following people for helpful comments, suggestions, insight,
and especially for their helpful criticism and direction throughout several iterations of this
chapter. Without their greatly appreciated help and insight, these advanced optimization
techniques would not have been possible. They are: Jon Anderson, John Carillo, Sebastian
Ceria, Curt Engler, Morton Glantz, Marc Gresack, Kingsley Jones, Roberto Malamut,
Pierre Miasnikoff, Eldar Nigmatullin, Bojan Petrovich, Mike Rodgers, and Peter
Tannenbaum.
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predetermined maximum exposure to a risk factor or a sector. And some in-
dex funds may not be allowed to have their tracking error to a benchmark
exceed a certain level regardless of alpha expectations.

Maximum number of names. Some managers will limit the number of
names in the portfolio so that they can better manage the portfolio. These
portfolio managers usually employ a combination of quantitative and qual-
itative portfolio management. These managers perform a quantitative port-
folio optimization limiting the number of names to hold in the portfolio,
e.g., only holding say 50 or fewer names at most. The portfolio manager
will follow these limited companies in fine detail and make changes if
the company has fallen out of favor or if their expectation on potential com-
pany growth or dividend stream has changed. It is much more difficult to
perform fundament analysis on a portfolio of several hundred names than
on a portfolio with only 50 or fewer names.

Reflect future views. Managers may specify minimum weighting in a group
of stocks or in a sector if they feel this group is likely to outperform the mar-
ket of their benchmark index. Often, managers may not have specific stock
level alphas or stock-specific views, but will apply a higher weighting to the
group as a whole. Additionally, managers may specify a maximum weight-
ing for a group of stocks if they believe a particular group will underper-
form the market and they do not have a view on any particular stock.

Risk management. Portfolio managers may at times be suspicious of the
estimated portfolio risk, stock volatility, or covariance across names from
a particular risk model. In this case, mangers are mostly concerned about
type II error, that is, the potential for the risk model to present false-
positive relationships. A desired property of optimizers is that the results
will exploit beneficial relationships. But if these relationships are false-
positive relationships the solution will actually increase portfolio risk.
Thus as means to provide an added level of safety surrounding potential
false-positive relationships, managers may specify maximum position sizes,
maximum levels of risk exposure, or a maximum stock-specific weight
(e.g., hold no more than 5% or 10% of the total portfolio value in a specific
stock). This constraint is intended to protect the fund from potential errors
in the input data.

Manage transaction costs. The effect of transaction costs and its drag on
performance can often be detrimental to fund performance. The larger the
position size, the higher the transaction cost. We have often observed that
the liquidation cost (selling the order) is much more expensive than the
acquisition cost (buying the order). Managers are more likely to buy stocks
in favorable market conditions and sell stocks with which they have fallen
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out of favor, when volatility has spiked and when liquidity dries up. Thus
the liquidation cost is often much more costly than the purchasing cost. As a
means to protect the fund against these higher liquidation costs, managers
may place a maximum level on the position size, e.g., no more than 10%
of average daily volume (ADV).

The effect of transaction costs on portfolio returns and its drag on overall
performance has been well documented. For example, Loeb (1983) found
that block trading could result in an additional 1%e2% of cost for large
cap stocks and as much as 17%e25% or more for small cap illiquid stocks.
Wagner and Edwards (1993) found that implementation of trading decisions
could approach almost 3% of the trade value in times of adverse market
movement. Chan and Lakonishok (1995) found that the hidden trading
cost components due to market impact and opportunity cost could amount
to more than 1.5% of trade value. Grinold and Kahn (2000) examined the
effect of transaction costs on portfolio construction. Kissell and Malmut
(2006) found that inefficient executions, i.e., implementing via strategies
or algorithms that are not consistent with the investment objective, can in-
crease tracking error by 10e25 bp for passive index managers and by as
much as 50 bp for actively managed funds. And more recently, studies
have found that transaction costs may still account for additional slippage
of up to 1% of annual performance. With such high trading costs associated
with implementation it is no wonder that portfolio managers underperform
their benchmarks (Treynor, 1981).

In addition to the high transaction costs and corresponding trading friction,
there is often an additional drag on portfolio returns due to a misalignment
between the investment objective and trading desk goals. For example, sup-
pose a value manager enters a buy order for a stock that is undervalued in
the market. This manager wants to execute the position in an aggressive
manner before the market discovers the mispricing and makes a correction.
If this order is executed by a trader via a full-day volume-weighted average
price (VWAP) strategy it is very likely that the market correction will occur
before the order is complete causing the manager to pay higher prices or
potentially not complete the order fully, which results in high opportunity
cost. In either case the manager does not achieve the full potential of the
opportunity because of the trading strategy not because of the investment
decision. In this case it would be much more advantageous to trade via a
more aggressive strategy such as an arrival price or implementation shortfall
algorithm to transact more shares at the manager’s decision price. VWAP
strategy in this example is not an appropriate strategy and is misaligned
with the investment objective of the fund. Even if the trader achieved or
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outperformed the VWAP price in this example the selection of the VWAP
strategy would be an inappropriate decision.

Consider another situation where the portfolio manager constructs an
optimal portfolio on the EIF and the decision is implemented using an
optimal strategy on the efficient trading frontier (ETF). Many would argue
that since both the portfolio and underlying trading strategy are optimal,
then the fund is positioned to achieve its maximum performance, and hence
the trading decision is the best execution. But this is not necessarily true.
Suppose the trader executes the trade list via a passive full-day VWAP strat-
egy. If there is adverse price movement over the day the manager would
realize less favorable prices and incur a higher trading cost. If there is favor-
able price movement over the day the manager would realize better prices
and a lower trading cost. Regardless of the actual prices incurred and result-
ing trading cost, this fund may have been exposed to unnecessary incremen-
tal market exposure. And in Markowitz’s terminology, this results in lower
investor utility. The same situation would hold true for a trader who exe-
cutes more aggressively than necessary. In this case the fund will incur
an unnecessary high trading cost and again lower investor utility. It is
imperative that both investor objective and trading goals be aligned for in-
vestors to achieve that targeted level of investor utility.

Portfolio managers and traders are often at odds with each other regarding
what constitutes best execution and how a portfolio decision should be
implemented. Managers often wish to use the benchmark price that was
used in their optimization process. Traders often seek to achieve the price
that is being used to measure their performance such as the VWAP price.
This results in an inconsistency between the investment objectives and
trading goals, and often leads to suboptimal portfolios and lower levels of
investor utility. Investors and traders need to partner across all phases of
the investment cycle to capture maximum levels of return.

The true magnitude of underperformance is probably understated in the in-
dustry even after accounting for market impact and opportunity cost. This
reason is primarily due to the inconsistency across portfolio manager objec-
tives and trader goals. This inconsistency often leads to higher cost and/or
higher risk, and ultimately lower ex-post investor utility. While alpha decay
and transaction costs are often discussed in the literature, the reduction in
investor utility is seldom if ever discussed, and this is even more difficult
to observe than market impact.
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TRANSACTION COSTS IN PORTFOLIO
OPTIMIZATION
Transaction costs as part of the portfolio optimization process is not a new
concept. There have been many attempts to account for these costs during
stock selection. A brief history of these approaches is described below.

First wave: The first wave of portfolio optimization with transactions costs
focused on incorporating the bideask spread cost into the optimization pro-
cess. The belief was that since trading costs are generally lower for large cap
liquid stocks and trading costs are generally higher for small cap illiquid
stocks, spreads would be a good proxy for costs since spreads are generally
lower for large cap stocks and higher for small cap stocks. By decreasing ex-
pected returns by the round-trip spread cost, managers felt that the optimizer
would determine a more appropriate mix of stock and a more accurate ex-
pected return. The optimized solution would apply larger weights to stocks
with smaller spreads and lower weights to stocks with higher spreads. While
this process was a good first step in the process it still did not account for the
possibility that a large number of shares of a large cap liquid stock could in
fact be more expensive than a small number of shares of a small cap illiquid
stock. The first wave of portfolio optimization with transaction costs did not
account for the cost associated with the size of the order.

Second wave: The second wave of portfolio optimization with transaction
costs focused on incorporating a market impact estimate that was dependent
upon order size. These types of models have been previously formulated by
Balduzzi and Lynch (1999) and Lobo, Fazel and Boyd (2006). In this pro-
cess, larger orders will have higher market impact cost than smaller orders
in the same names. The expectation is that the optimization process would
determine sizes that could be easily absorbed into the market without incur-
ring inappropriate levels of impact and the resulting optimal solution would
provide a more efficient allocation of dollars across the different stocks. In
this approach, however, the market impact formula used was based on a
“static” costesize relationship and does not provide any cost reduction ben-
efits from the underlying execution strategy.

This means that estimated cost will be exactly the same for the number of
shares transacted regardless of whether those shares were to be transacted
with a high level of urgency or passively through the day. Furthermore,
the optimization process, even though it considered the risk term to deter-
mine the optimal mix of stocks and portfolio weightings, does not consider
the risk composition of the other names in the trade list to determine corre-
sponding impact cost. For example, suppose the trade list consists of only a
single buy order for 500,000 shares of RLK. The manager is exposed to
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both market risk and company-specific (idiosyncratic) risk from the order
and will more often trade in an aggressive manner and incur higher cost.
Next, suppose that the trade list consists of the same 500,000 share buy or-
der for RLK and an additional 100 buy orders. Here the manager achieves
diversification of company-specific risk due to the large number of names in
the trade basket and hence is only exposed primarily to market risk. The
manager could trade this list at a more moderate rate since there is less
risk exposure (only one source of risk as opposed to two sources of risk).
This results in a lower market impact cost for the 500,000 shares of
RLK. Finally, suppose the manager performs a rebalance of the portfolio
and the trade list is comprised of the 500,000 buy order for RLK plus an
additional 100 stocks to buy and an additional 100 stocks to sell (with equal
dollars across both the buy list and sell list). This trade list will now achieve
risk reduction from diversification of company-specific risk just like it did in
the previous scenario and will also achieve market risk reduction from hav-
ing a two-sided portfolio (due to the buy and sell orders). Now RLK can be
traded in a passive manner and the corresponding trading cost will be even
lower.

The second wave of portfolio optimizers did not take into account the cor-
responding trading cost resulting from the actual implementation strategy,
which as we demonstrated above can vary dramatically. The second
wave of optimizers would assess the same exact cost to the order regardless
of the other names in the trade list and regardless of how those shares would
be transacted. Aggressive, moderate, and passive strategies would all be
assumed to incur the same trading cost. Finally, the second wave of portfo-
lio optimizers did not provide managers or traders with any insight at all
into how the targeted portfolio should be best implemented. It is left to
the managers and traders to determine. But as we have discussed above,
the goals of these parties are often conflicting.

Third wave: The third wave of portfolio optimization with transaction costs
consists of incorporating a market impact function that is dependent upon the
size of the order, the overall risk composition of the trade list, and the under-
lying trade schedule. This portfolio optimization problem has been studied
by Engle and Ferstenberg (2006) and Kissell and Malamut (2006). The ad-
vantages of this type of optimization are (1) it will properly account for the
trading cost based on the underlying trading strategy, and (2) it will provide
as output from the process the exact trading schedule to achieve the targeted
portfolio so there will be perfect alignment between portfolio manager and
trader. For example, these optimization processes will have different costs
for the 500,000 share order of RLK (from above) based on the composition
of the optimal trade list. This will also result in a more appropriate allocation
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of dollars across assets and across stocks. The portfolio will be more effi-
cient. Furthermore, since the by-product of the optimization will include
both the new targeted portfolio and the underlying instructions and trading
schedule to achieve that portfolio there will be no ambiguities between the
investment objective and trading goals. Traders will be provided with the un-
derlying execution strategy (directly from the optimizer) to be used to trans-
act those shares. Portfolio manager and trader goals will finally be aligned!

In the remainder of the chapter, we provide the necessary background and
quantitative framework to assist portfolio managers and traders to properly
align investment objectives and trading goals. This results in a single best
execution trading strategy for the specific investment decision. We expand
the Markowitz ETF to include transaction costs and show there are various
cost-adjusted frontiers but only one ETF. The chapter concludes with an
introduction to the necessary mathematics and optimization process to
develop multiperiod portfolio optimizers incorporating transaction cost
analysis (TCA).

Some of the highlights of the chapter include:

n Unification of the investment and trading decisions results in consistency
across all phases of the investment cycle and provides a true best execu-
tion process.

n Multiple cost-adjusted EIFs exist but there is only one optimal trading
strategy.

n The Sharpe ratio determines the appropriate level of risk aversion for
trade schedule optimization.

n Evidence that a naïve VWAP strategy is often an inefficient execution
strategy may lead to lower levels of investor utility and suboptimal ex-
post portfolios.

n Evidence that a passive VWAP strategy and an aggressive execution
strategy may result in identical levels of investor utility.

n Portfolio optimization framework properly incorporates market impact
and timing risk estimates. This leads to an improved best execution fron-
tier and optimal ex-post portfolios.

n An approach to determine whether a suboptimal Markowitz portfolio ex-
ists results in a more efficient and pareto optimal portfolio after trading
costs. For example, it may be possible for an ex-ante suboptimal portfo-
lio to have higher riskereturn characteristics (and be more optimal) than
the originally optimal portfolio ex-post?
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PORTFOLIO MANAGEMENT PROCESS
Quantitative portfolio managers pride themselves on making rational invest-
ment decisions, constructing efficient investment portfolios, and maxi-
mizing investor utility. In fact, this is the central theme of modern
portfolio theory. Portfolio managers following this course of action will
seek to maximize return for a specified quantity of risk (variance).

This optimization is formulated as follows:

Max w0r
s:t: w0Cw� s2�

p
Sw ¼ 1

where w is the vector of weights, r is the vector of expected returns, C is the
covariance matrix, and s2�p is the targeted or maximum level of risk.

This optimization can also be formulated as the dual equation where the goal
is to minimize risk for a targeted return r*. This optimization is formulated as:

Min w0Cw
s:t: w0r� r�

Sw ¼ 1

The set of all solutions to the portfolio optimization problem above results
in the set of all efficient portfolios and comprises the efficient frontier. This
is the set of all portfolios with highest return for a given level of risk or the
lowest risk for a specified return. Proceeding, to avoid confusion, we use the
term EIF to denote the set of optimal investment portfolios (Markowitz and
Sharpe) and ETF to denote the set of optimal trading strategies
(AlmgreneChriss).

The set of all optimal portfolios can also be found using Lagrange multi-
pliers as follows:

Max w0r� l$w0Cw
s:t: Sw ¼ 1

where l denotes the investor’s risk appetite (e.g., level of risk aversion). Solv-
ing for all values of l � 0 provides us with the set of all efficient portfolios.

Example: Efficient Trading Frontier With and
Without Short Positions
In this example, we construct the efficient frontier using the techniques
above for a subset of 100 large cap stocks from the S&P500 index. We
construct these portfolios with and without a short sales constraint. That
is, one portfolio is a long-only portfolio where all weights have to be
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positive, and the other portfolio contains both long and short positions and
the weights could be positive or negative. This is shown in Fig. 17.1. Notice
how the efficient frontier with short sales allowed provides higher returns for
the same risk than the no-short sales case. This is because investors can use
short positions to better manage risk in the portfolio. Additionally, this
example demonstrates how the usage of constraints (in this example no short
sales allowed) may result in reduced portfolio performance.

Example: Maximizing Investor Utility
In this example, we show how investors determine their investment portfo-
lio based on their utility preferences. Utility preferences, expressed in terms
of indifference curves, are the set of all returnerisk portfolios that provide
the investor with equal quantities of “happiness.” Investors therefore are
indifferent to which portfolio on the indifference curve they actually own
since all of these portfolios provide the same quantity of economic utility.
Investors, of course, will always prefer higher returns for the same level of
risk than lower returns. Thus the goal of the investor is always on the high-
est indifference curve possible.

In Fig. 17.2 we show the efficient frontier with three different utility curves.
These indifference curves are ordered such that U1 > U2 > U3. Therefore
investors will prefer portfolios on U1 to portfolios on U2, and will prefer
portfolios on U2 to portfolios on U3. Notice that these utility curves are
shaped in such a way that investors will only accept more risk if they receive
higher returns. For utility curve U3, investors are equally happy with either
portfolio A2 or A3 since they are on the same indifference curve. But inves-
tors prefer portfolio A1 to either A2 or A3 since utility curveU2 is higher than
utility curve U3 (U2 > U3). Unfortunately, utility curve U1 does not intersect
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with the ETF and does not contain any optimal portfoliosdit is an unattain-
able level. The best that investors can achieve is A1 on curve U2.

This utility maximization proves to be an invaluable exercise not only for
determining the preferred optimal portfolio, but also for determining the
optimal trade schedule to achieve that optimal portfolio. We make further
use of utility optimization below.

TRADING DECISION PROCESS
Once the optimal portfolio has been constructed, traders are tasked with
determining the appropriate implementation plan to acquire that new posi-
tion. As discussed throughout the text, when implementing these decisions,
investors encounter the by now all too well-known trader’s dilemmad
trading too quickly results in too much market impact cost but trading
too slowly results in too much timing risk.

To determine the best way to implement the portfolio manager decision,
Almgren and Chriss (1999, 2000) provided a framework similar to Marko-
witz (1952) to solve this trader’s dilemma by balancing the tradeoff between
market impact cost (MI) and timing risk(TR). Mathematically, these optimal
trading strategies are computed as follows:

Min MIðxÞþ l$TRðxÞ
where x denotes the optimal trading schedule (e.g., how shares are to be
transacted over the trading horizon) and l denotes the investor’s level of
risk aversion. The appropriate formulation of the market impact function
and portfolio optimization techniques have been the focus of earlier chapters.
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If we solve the above equation for all values of l � 0 we obtain the set of all
optimal strategies. When plotted, these strategies constitute the Almgren and
Chriss ETF. This is illustrated in Fig. 17.3. In this example, we have high-
lighted three different strategies. Strategy x denotes a moderately paced trade
schedule with market impact 25 bp and timing risk 50 bp, strategy z is an
aggressive strategy with high market impact 200 bp but low timing risk
25 bp, and strategy y is a passive strategy, e.g., VWAP, with low market
impact 10 bp but much higher timing risk 300 bp.

What is the Appropriate Optimal Strategy to Use?
There has been quite a bit of research and industry debate focusing on how
to determine the appropriate optimal strategy. Bertsimas and Lo (1998) pro-
pose minimizing the combination of market impact and price appreciation
(price drift) without regard to corresponding trading risk. Investors in this
case need to specify their alpha component. In a situation where there is
no directional view of natural price appreciation, the underlying strategy
is a VWAP that will minimize market impact cost. Almgren and Chriss
(1999, 2000) propose two solutions. First, balance the tradeoff between
market impact and timing risk at the investor’s level of risk aversion. Sec-
ond, minimize the value-at-risk at the investor’s alpha level (e.g., 95%).
Kissell, Glantz, and Malamut (2004) provide a macrolevel decision-
making framework (see also Chapter 8) to determine the most appropriate
strategy based on the investment objective of the fund.

To determine the most appropriate trade schedule for the trade list we do
need further information regarding the underlying investment objective.
An investor who has uncovered a market mispricing may choose to execute
more aggressively and take advantage of the temporary market inefficiency.
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A manager performing a portfolio rebalance may elect to trade via a strategy
that best manages the cost and risk tradeoff. And an index manager who is
purchasing shares and quantities to replicate the underlying benchmark in-
dex may not have any momentum expectations and may trade passively
over the day following a VWAP strategy to minimize impact.

Fundamental and active managers who do not construct portfolios based on
mean-variance optimization will often achieve better performance utilizing
pretrade analysis and following trade schedule optimization techniques.
And portfolio managers who do utilize mean-variance optimization can
achieve even better results by combining the investment and trading
decisions.

UNIFYING THE INVESTMENT AND TRADING
THEORIES
In this section we provide techniques to bridge the gap between the invest-
ment and trading theories. We follow the approach outlined by Engle and
Ferstenberg (2007) and Kissell and Malamut (2007) below.

Let us first start by reexamining our optimal trading strategies from this time
from the context of portfolio theory.

A portfolio manager constructs the EIF utilizing quadratic optimization and
then determines their preferred optimal portfolio utilizing investor utility
maximization following Sharpe (Fig. 17.2).

Suppose that this preferred portfolio has expected return u* ¼ 10% and risk
s* ¼ 20%. The trader then performs trade schedule optimization and con-
structs the ETF using values of 0 � l � 10 to determine the best way to
implement the portfolio.

Rather than analyze our trade schedules in the traditional costerisk space let
us examine our trading cost consequences by overlaying the ETF on the EIF
(Fig. 17.4). Notice that the ETF is now inverted from its more traditional
appearance and shows the cost-adjusted potential riskereturn profile for
optimal portfolio A. The efficient portfolio A is no longer associated with
a single expected return and risk. There are multiple sets of potential return
and risk depending upon the trading strategy.

The adjusted return for the portfolio will be reduced by the estimated impact
cost. That is:

Adjusted Return ¼ Portfolio Return� StrategyðCostÞ
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The new timing risk, however, will increase due to the market exposure
incurred while acquiring the position. The actual increase in risk is additive
in variance (risk value squared). We add the 1-day timing risk to the annu-
alized portfolio risk value. This is calculated as follows:

Adjusted Risk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPortfolio RiskÞ2 þ ðStrategy RiskÞ2
q

Let us now examine three potential trading strategies represented by
x, y, and z. The expected market impact and corresponding timing risk for
these strategies and their consequence on the overall riskereturn profile
for optimal portfolio A are shown in Table 17.1.

Notice the reduction in return is equal to the trading cost corresponding to
the strategy but the increase in risk is actually less than the timing risk of the
strategy. This is because risk is subadditive (the variance expression is ad-
ditive making the square root of this term less than additive). For example,
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n FIGURE 17.4 Efficient Investment Frontier with Efficient Trading
Frontier. Source: Journal of Trading (2007).

Table 17.1 Cost-Adjusted RiskeReturn Values.

Scenario

Trading Costs Adjusted RiskeReturn

Impact Timing Risk Return Risk

Portfolio A 10% 20%

Strategy y 0.10% 3.00% 9.90% 20.224%

Strategy x 0.25% 0.50% 9.75% 20.006%

Strategy z 2.00% 0.25% 8.00% 20.002%
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to implement portfolio A using strategy y, returns are expected to decline by
0.10% (10 bp) and risk will increase by 0.224% (22.4 bp) due to the corre-
sponding timing risk of the transaction. Notice that the overall risk conse-
quence from the strategy is much less than the risk incurred on the day of
3% (300 bp) due to the subadditive nature of risk. Variance is additive
and risk is subadditive. On the other extreme, let us evaluate implementation
via strategy z. Here return will be reduced by 2% due to the market impact of
strategy z and the increase in portfolio risk will be negligible at 0.002% or
0.2 bp. Notice that for the investment portfolio the underlying market impact
cost of the strategy has a much more dramatic effect on the ex-ante portfolio
than the timing risk of the strategy. This is an important observation for the
portfolio manager when devising the appropriate strategy to execute the
trade.

Therefore even a strategy with a large quantity of timing risk will have a
much smaller effect on overall portfolio risk. But a strategy with a large
quantity of market impact cost will have a large effect on overall portfolio
returns.

Following the example in Table 17.1, the best the manager can expect to do
after trading costs is to realize an ex-post portfolio return from 8% to 9.90%
with corresponding portfolio risk of 20.224%e20.002%, respectively.
Notice the effect of trading costs on portfolio performance. This cost dom-
inates the effect of the timing risk of the strategy.

Important notes: The investor will not be able to achieve the expected port-
folio return even via a very passive strategy such as VWAP because even a
very passive VWAP strategy will incur permanent impact cost. The portfo-
lio risk calculation is subadditive, whereas portfolio variance is an additive
relationship. This results in trading costs primarily due to market impact
cost having a much more dramatic effect on portfolio performance than cor-
responding timing risk of the strategy.

Which Execution Strategy Should the Trader Use?
As stated above, some investors may wish to trade passively such as with
strategy y to minimize market impact cost and some may wish to trade
aggressively such as with strategy z to minimize timing risk or possibly
lock in a market mispricing or realized profit. Furthermore, there are other
investors who prefer a strategy somewhere in the middle such as strategy
x. But which strategy is most appropriate? Since each of these strategies
lies on the ETF, can they all be considered a best execution strategy?
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The answer is no. There is only a single best execution strategy. (This
answer may surprise some readers.)

Our conclusion is described following the same investor utility maximiza-
tion that was used to determine the preferred optimal portfolio A on the ETF.

Combining the EIF and ETF onto one chart provides investors with the abil-
ity to determine the proper optimal strategy for a specified portfolio. To
show this, first recall that investors determine their preferred optimal port-
folio through maximizing their utility function. But now let us maximize
investor utility for both frontiers. This is illustrated in Fig. 17.5.

The portfolio manager selected portfolio A as the preferred strategy because
it was the portfolio that maximized the investor’s utility function (shown as
U2 in Fig. 17.2). Now let us apply the same technique used to determine
portfolio A to determine the optimal trading strategy. First, utility U4 passes
through two strategies on the ETF: aggressive strategy z and passive strategy
y. Since both of these strategies lie on the same indifference curve they pro-
vide the investor with equal utility. This may be surprising to many. This
analysis shows that two seemingly opposite strategies (aggressive and pas-
sive) can have the same effect on investor utility and thus the investor is
indifferent as to whether they trade aggressively or passively.

But investors can achieve higher results. Indifference curve U3 is higher
than U4, so provides the investor with a higher level of utility. Additionally,
curveU3 intersects with a single trading strategy x. Therefore strategy x is the
single strategy that maximizes investor utility and represents the single best
execution strategy. It is also the strategy that is most consistent with the in-
vestment objective.
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There are two additional insights that need to be highlighted. First, the
VWAP strategy represented by strategy y is not necessarily consistent
with the investment object because it results in a lower level of investor util-
ity. The VWAP strategy corresponds to U4, which is below the optimal util-
ityU3 corresponding to strategy x. Investors wishing to hold portfolio A1 and
trade via VWAP are not aligning their trading decisions with their invest-
ment goals. Investor utility is not being maximized to its fullest extent.

Second, the VWAP strategy is also associated with the same level of
investor utility as an aggressive strategy denoted as z on the ETF. Since
both strategies lie on the same investor utility curve U4 they are providing
the same level of happiness and investor utility. Here we have what appears
to be two conflicting strategies but with the same level or utility, which
means that investors are completely indifferent as to which strategy they
use to acquire portfolio A. But neither strategy is the preferred strategy since
they are not associated with the highest value of utility.

The optimization process used here is the same process utilized by investors
to determine their optimal preferred efficient portfolio. In this depiction, the
maximum level of achievable utility is U3 and corresponds to trade strategy
x. Therefore investors with preferred portfolio A need to implement their in-
vestment decision utilizing strategy x to ensure consistency between invest-
ment and trading goals. Notice that in the case of a VWAP trading strategy y,
investors incur too much risk resulting in a lower utility than that associated
with strategy x. Also, an aggressive strategy z corresponds with an equiva-
lent level of utility as associated with the VWAP strategy. The last important
point here is that there is a single “optimal” trading strategy corresponding to
each efficient portfolio.

The importance of this representation in Fig. 17.5 is that it clearly illustrates
that there is a “single” optimal trading strategy consistent with the underly-
ing investment portfolio. This is the strategy that maximizes investor utility.

COST-ADJUSTED FRONTIER
The cost-adjusted frontier is the EIF after adjusting for trading costs (e.g.,
the ex-post frontier). An example of the derivation of the cost-adjusted
frontier is as follows:

First, start with three efficient portfolios on the EIF. These portfolios
represent the Markowitz (ex-ante) efficient portfolios.
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Second, perform trade schedule optimization for each portfolio. This will
result in the set of all optimal trading strategies for each of the portfolios.
It provides three different ETFs.

Third, overlay the ETF for each portfolio onto the EIF. These adjusted
portfolios portray the set of riskereturn profiles for each of the efficient
portfolios after adjusting for trading costs.

The cost-adjusted frontier is then the highest envelope of all cost-adjusted
portfolios. This process is illustrated in Fig. 17.6 and shows multiple
cost-adjusted frontiers. For each portfolio on the frontier there is a corre-
sponding ETF. We can draw the cost-adjusted frontier as the curve through
all corresponding points of the same strategy. For example, the VWAP cost-
adjusted frontier is drawn by connecting all VWAP strategies on the ETF,
and the same process is performed for the aggressive and normal strategies.
Then, the best the investor can achieve is the envelope of the highest cost-
adjusted points. This frontier is now referred to as the cost-adjusted frontier.

The VWAP frontier shows the expected riskereturn profile for the optimal
portfolios if VWAP was used to implement the decision. The aggressive
frontier shows the expected riskereturn profile for the optimal portfolios
if an aggressive strategy was used to implement the decision. The optimal
cost-adjusted frontier (cost-adjusted frontier) is the upper envelope of all the
cost-adjusted portfolios.

It is interesting to point out here that in our example the VWAP strategy is
an inefficient ex-post frontier because the VWAP frontier lies below the
cost-adjusted frontier and is associated with a lower level of investor utility.
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Another interesting aspect is that the VWAP -frontier is equivalent to a cost-
adjusted frontier constructed from an aggressive strategy (aggressive fron-
tier). Notice that the VWAP frontier passes through the most passive
strategies on the ETF as well as a more aggressive strategy on the ETF.
Neither the passive VWAP frontier nor the aggressive frontier is a preferred
strategy since it does not maximize investor utility. Therefore execution via
a VWAP or an overly aggressive strategy leads to decreased utility. To
maximize utility it is essential that the underlying trading strategy does
not incur too much cost (primarily market impact) or too much risk.

Investors will always seek out the highest efficient investment portfolio.
Engle and Ferstenberg (2006, 2007) provided an alternative discussion of
the cost-adjusted frontier. In their article, the authors present a framework
to incorporate transaction costs directly into the investment process to deter-
mine a more efficient ex-post portfolio.

DETERMINING THE APPROPRIATE LEVEL OF RISK
AVERSION
Suppose a manager constructs a portfolio by maximizing investor utility,
then submits the list to the trader for execution. In most situations the trader
does not have sufficient time or tools to perform a detailed cost analysis to
determine the appropriate cost-adjusted frontier and corresponding execu-
tion strategy. However, the trader usually does have sufficient time to
perform a single trade cost optimization. But how should the trader specify
the level of risk aversion to ensure the trading decision is consistent with the
investment decision?

A joint examination of the EIF and the cost-adjusted frontier provides some
insight into our question (Fig. 17.7). In the figure, A represents the selected
optimal portfolio and x represents the single best execution strategy. The ques-
tion now shifts to finding this strategy. If we assume that all investors are
indeed rational investors, then the tangent to the EIF at the optimal portfolio
A is equal to the Sharpe ratio S of the portfolio (Sharpe, 1966), e.g.,
S ¼ dReturn/dRisk. The corresponding level of risk aversion on the ETF at
the best execution strategy x is l ¼ dCost/dRisk. This is also equal to the slope
of the tangent at the point of the intersection of the cost-adjusted frontier and
the ETF overlay. Notice that the slopes of the two tangents are approximately
equal. Therefore the corresponding level of risk aversion to ensure consistency
across investment and trading decisions can be determined from the Sharpe
ratio of the trade, e.g., l y S. While this may not be the exact value it does
at least ensure a large amount of consistency between investment and trading
decisions. And it provides the trader with an appropriate input into the trade
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schedule optimization process, which is extremely useful at times when they
do not have enough time to perform a detailed analysis.

S ¼ dReturn=dRiskydCost=dRisk ¼ l

Syl

BEST EXECUTION FRONTIER
The next step in the portfolio construction process is for managers to
consider the possibility that there may be a suboptimal Markowitzian port-
folio, but after adjusting for trading costs and trading risk, this portfolio may
in fact be pareto efficient with improved riskereturn characteristics over the
set of optimal Markowitzian portfolios. For example, is it possible that a
portfolio does not lie on the theoretical Markowitz EIF, but after accounting
for variable market impact cost and timing risk, the resulting cost-adjusted
riskereturn profile lies above the cost-adjusted frontier?

This problem is illustrated in Fig. 17.8. First, consider the three efficient
portfolios on the EIF (A1, A2, and A3). After accounting for trading costs,
we arrive at the corresponding portfolios (x1, x2, and x3). The set of all
cost-adjusted optimal portfolios results in the cost-adjusted frontier
(described above). Next, consider the possibility that there exist a set of sub-
optimal portfolios (B1, B2, and B3). These are portfolios that do not initially
lie on the EIF but due to more favorable trading statistics (e.g., higher
liquidity, lower impact sensitivity, lower volatility, etc.) they result in
cost-adjusted portfolios (y1, y2, and y3) with higher riskereturn characteris-
tics. The resulting cost-adjusted portfolios correspond to a higher level of
investor utility.
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This frontier is defined as the best execution frontier. If these portfolios do in
fact exist, investors would greatly benefit by investing in portfolios that appear
suboptimal prior to trading but after trading they result in portfolios that
achieve a higher riskereturn tradeoff and investor utility than starting with
the optimal portfolio. Notice that the utility associated with the best execution
frontier is higher than the utility associated with the cost-adjusted frontier.

While it is not guaranteed that a suboptimal portfolio will always result in a
higher cost-adjusted frontier, it is entirely possible. The best execution fron-
tier can only be uncovered via incorporation of trading costs and risks
directly in the portfolio optimization decision. For many portfolio man-
agers, the quest for the best execution frontier has become the next gener-
ation of portfolio research. This is exactly what Wayne Wagner was
referring to when he defined best execution as the process of maximizing
the investment idea.

PORTFOLIO CONSTRUCTION WITH TRANSACTION
COSTS
The integration of transaction costs into the investment decision process has
been previously addressed in the academic literature. For example, Leland
(1996) studied the appropriate time to rebalance a portfolio consisting of
stocks and bonds in the presence of transaction costs. Michaud (1998) intro-
duced a portfolio optimization technique based on Monte Carlo methods to
construct optimal portfolios in the presence of risk and return uncertainty.
Ginold and Kahn (2000) examined various techniques to incorporate
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transaction costs into the investment decision. Tutuncu and Koenig (2003)
addressed the optimal asset allocation problem under the scenario where the
estimated returns are unreliable. Balduzzi and Lynch (1999) studied a multi-
period optimization problem in the presence of costs that are either fixed or
proportional to a similar trade value. Malamut and Kissell (2002) studied
efficient implementation of a multiperiod trade cost optimization from the
perspective of the trader. Mitchell and Braun (2004) also considered portfo-
lio rebalancing in the presence of convex transaction costs where costs are
dependent solely on the quantity of shares transacted. Engle and Fersten-
berg (2007) discussed a cost-adjusted frontier.

Most of this research work falls into what we coined the second wave of
portfolio optimizers earlier in the chapter. In this section, we introduce
the necessary techniques to solve the portfolio optimization problem (third
wave of optimizers) and determine the best execution frontier. We differen-
tiate from the above works in many ways (see Kissell and Malamut, 2007).
For example:

1. We examine the portfolio optimization in terms of both market impact
cost and trading risk.

2. We define market impact to be dependent upon the size of the order and
the underlying execution strategy. In this case, investors have the oppor-
tunity to achieve further cost reduction through trading a diversified and/
or well-hedged portfolio. Thus depending upon the underlying trade list,
the number of shares in an order could vary.

3. Our solution is based on a multiperiod optimization problem that sepa-
rates the total investment horizon into a trading period where shares
are transacted and a holding period starts after the acquisition of the tar-
geted portfolio and where no other shares are transacted. These problems
are linked by the total shares to trade S and the trade schedule used to ac-
quire those shares, that is, S ¼Px.

4. Our ultimate goal in this section is the quest for the best execution
frontier.

An interesting aspect of the current portfolio construction environment is
that the process appears to be backwards. For example, the results of the
current portfolio optimizer provide us with a targeted future portfolio.
The next question is to determine how we should best get to that end point.
But what if the road is too bumpy or if no efficient road exists? Then what?
We would only find this out after setting out on our journey.
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A better process is a forward-looking view of portfolio construction. Rather
than start with the future targeted portfolio and work our way backward
through the unknown as we do now, we begin to move forward from the cur-
rent portfolio and buy and sell shares efficiently until we arrive at the optimal
end point. Proceeding in this manner will ensure that we only take an efficient
implementation path or only a difficult path if the end return more than offsets
the incremental cost. The end product in this case is determined directly from
the trade schedule and ensures that the most frictionless path was taken.

Quest for Best Execution Frontier
The quest for the best execution frontier is centered on proper integration of
trading costs into portfolio optimization. The trick is to incorporate a vari-
able market impact function dependent upon the number of shares trans-
acted (size), volatility, trade strategy, and the overall risk composition of
the trade list (covariance) to take advantage of potential diversification
and hedging opportunities.

For consistency of notation and uniformity across trading horizons and
holding periods we express decisions in terms of dollars and shares to trade
rather than the traditional investment units of weights and returns. This is
also more important because it is the dollar value and shares traded that ef-
fect market impact cost and not the weight of the stock in our portfolio.

Using these new units, the original portfolio construction optimization problem
can be written in terms of a cash investment and shares to trade as follows:

Max
S

S0ðPt �P0Þþ l$S0CS

s:t: S0P0 ¼ V$

where S is the vector of shares to hold in the portfolio (decision variable), Pt

is the vector of expected prices at time t, P0 is the vector of current prices,
and C is the covariance matrix expressed in ($/shares)2.

To properly incorporate trading costs into this equation it is necessary to
introduce a new decision variable xk to denote how shares are to be trans-
acted over time (e.g., the underlying trading strategy). This solution is
best accomplished via a multiperiod optimization formulation that considers
both a trading horizon where investors acquire shares from t ¼ 1 to t ¼ n,
and an investment or holding horizon where no other shares are transacted
from t ¼ n to t ¼ T.

2This separation of the portfolio optimization problem into corresponding trading and in-
vestment horizons was first presented publicly in December 2003 expanding on the
work of Kissell andand Malamut presented in “Optimal Trading Strategies.”
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Let us now consider the effect of trading costs on portfolio return and risk in
terms of the multiperiod context.

Return
Expected stock return is the difference between expected future price and
expected average execution price multiplied by the number of shares in
the position. Here, the expected average execution price needs to incorpo-
rate market impact cost.

For a general market impact function, the absence of natural price appreci-
ation during the trading horizon, the expected execution value for a stock
can be computed as follows:

SiPi ¼
X
n

j¼ 1

xijðPi0 þMIðxijÞÞ

Si ¼
X
n

j¼ 1

xij

where Pi0 is the current price, xij is the number of shares of stock i to trade in
period j,MI(xij) is the market impact cost expressed in $/share for transacting
xij shares, and Si is the total number of shares, Si, xij, MI(xij) > 0 for buys or
long positions and Si, xij, MI(xij) < 0 for sells or short positions. Notice that
this representation of the market impact cost MI(xij) does indeed provide
costs that are dependent upon the underlying trading strategy x.

The total expected dollar return for the stock is:

mi ¼ SiPit � SiPi

¼ SiPit �
X
n

j¼ 1

xijðPi0 þMIðxijÞÞ

¼ SiPit � SiPi0 �
X
n

j¼ 1

xijMIðxijÞ

For an m-stock portfolio, the total expected dollar return accounting for mar-
ket impact is:

mp ¼
X
m

i¼ 1

 

SiPit � SiPi0 �
X
n

j¼ 1

xijMIðxijÞ
!
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Further insight and formulation of market impact models customized for the
portfolio constructions process can be found at www.KissellResearch.com.

Risk
The risk (variance) of a portfolio over a specified trading period is deter-
mined from the number of shares held in the portfolio and the correspond-
ing covariance matrix. The total portfolio risk for either a held portfolio or a
portfolio that is changing over time is computed by summing the portfolio
variance over each period. The total risk borne by a portfolio manager over
a multiperiod horizon is thus determined as follows:

Let rk be the vector of shares held in the portfolio at time k, e.g.:

rk ¼

0

B

B

B

B

@

r1k

r2k
«

rmk

1

C

C

C

C

A

where rij is the number of shares of stock i held in the portfolio at the begin-
ning of period j. That is:

rij ¼
X

j

k¼ 1

xik

Notice that this is the reverse notation used for residual shares in the trade
schedule optimization. Then, the total risk borne by the portfolio manager
over the entire T-period horizon is:

s2
p ¼ r01C

�r1 þ.þ r0nC
�rn

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Trading Horizon

þr0nþ1C
�rnþ1 þ.þ r0tC

�rt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Holding Period

where C* is the covariance matrix expressed in ($/shares)2 scaled to the
length of the trading period. For example, if each trading interval is 15 min
and C is the annualized covariance matrix, we have C� ¼ 1

250$
1
26$C since

there are approximately 250 trading days in a year and 26 15-min intervals
in a day. Now, since there are no additional transactions in the portfolio
after the end of the trading horizon (e.g., k ¼ n þ 1, ., t) we have
rinþ1 ¼ rinþ2 ¼ . ¼ rit ¼ Si for all stocks. In compressed form, this
equation is written as:

s2
p ¼

X
n

j¼ 1

r0jC
�rj

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Trading Horizon

þðt � nÞS0C�S
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Holding Period
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since there are n trading periods and (t � n) periods where the portfolio is
held and unchanged.

The full investment optimization incorporating market impact and timing
risk can now be expressed as follows:

Max
x

X
m

i¼ 1

 

SiPit � SiPi0 �
X
n

j¼ 1

xijMIðxijÞ
!

� l$

 

X
n

j¼ 1

r0jC
�rj þðt� nÞS0C�S

!

Subject to:

(i) SiPi0 þ P
n

j¼ 1
xijðPi0 þMIðxijÞÞ ¼ V$

(ii) Si ¼ P
n

j¼ 1
xij

(iii) rij ¼ P

j

k¼ 1
xij

(iv) xij � 0

This new objective function now correctly incorporates a variable trading
cost function along with estimated return and portfolio risk. The decision
variables are S and xij although S is computed from xij. We distinguish be-
tween these two variables for notation purposes onlydthe only true decision
variable for the optimizer is xij. The important decision variable for portfolio
managers is the number of shares to hold in the portfolio S, while the impor-
tant decision variable to traders is how those shares need to be transacted
over time.

The first constraint above ensures that the entire cash value V$ will be
invested into the portfolio and follows from the definition of expected
transaction value. The second constraint defines the number of shares that
will be held in the portfolio. The third constraint defines the cumulative
number of shares transacted in period j. The fourth constraint is an optional
constraint and can be specified for a cash investment only xij� 0, liquidation
only xij � 0, and no constraint to incorporate both buys and sells.

The new portfolio optimization problem can be separated into the traditional
investment and trading horizons as follows2:

Max
x

 

X
m

i¼ 1

ðSiPit � SiPi0Þ� l $ ðt� nÞS0C�S

!

�
 

X
m

i¼ 1

X
n

j¼ 1

xijMIðxijÞþ lr0jC
�rj

!
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This new formulation brings four interesting aspects to light. They are:

1. Risk aversion l is the same for both portfolio manager and trader.
2. Trader’s dilemma is not dependent upon any benchmark price.
3. Portfolio optimization with trading costs requires a multiperiod process.
4. The portfolio manager’s and trader’s decisions are not separabledthey

are linked by S ¼Px.

These are explained as follows:

First, the complete portfolio optimization is only based on a single risk-
aversion parameter. This ensures consistency across the investment and
trading decisions. A consequence of this formulation is that any trading
strategy derived using a risk-aversion parameter that is different than that
used during portfolio construction will result in lower investor utility since
it would not correctly quantify trading risk with investment risk. This is
most notable for a VWAP strategy where risk aversion is set to be l ¼ 0
and results in higher risk and lower utility.

Second, notice that the expression in the trading horizon section of the
equation is not dependent upon any benchmark price. Indirectly, it is based
on the current price since we are starting with the current portfolio value.
Thus any posttrade analysis based solely on a specified benchmark price
or computed as the difference between average execution price and some
benchmark is not the ideal approach to evaluate trader’s performance or
skill because it does not consider the underlying goal of the manager or
trader. Since the newly formulated portfolio optimization is now based on
an expected market impact cost and corresponding trading risk estimates,
subsequent posttrade performance attributions need to incorporate these
values to be able to provide any meaningful benefits. It is, however, essen-
tial that posttrade analysis be performed to assess the accuracy of the market
impact and trading risk estimates to ensure appropriate future investment
decisions. Furthermore, with the advent of algorithmic trading, algorithms
based on achieving a specified benchmark price rather than a specified
cost will surely hinder overall portfolio performance. For example, a
VWAP strategy will likely increase risk exposure and reduce overall utility.

Third, portfolio construction with trading costs needs to be formulated as a
multiperiod optimization problem. This requires both a trading period that
will accommodate a market impact estimate based on size, volatility, and
composition of the trade list (e.g., diversified market impact effect), and
an investment holding period where there will not be additional changes
to the portfolio. As shown above, to achieve the maximum benefit it is
essential that the market impact cost be based on both size and strategy.

Portfolio Construction with Transaction Costs 455



Thus allowing managers to implement their decisions in an appropriate
mannerdeither aggressive, passive, or normalddepends upon the risk
composition of the trade list.

Fourth, the portfolio manager’s and trader’s decisions are not separable. A
decision-making framework that first maximizes the riskereturn profile in
the investment problem then minimizes trading costs is not guaranteed to
maximize the entire objective function. This type of decision-making time-
line is also exactly opposite to what happens in practice where shares are
transacted first to arrive at the optimal portfolio. The process formulated
in our equation is based on transacting shares in the market first to be
consistent with practice. And addressing these issues in reverse orderde.g.,
determine first shares S and then trade schedule xdis only part of the whole
picture and is likely to make overall performance even worse (Table 17.2).

EXAMPLE
A portfolio manager is interested in investing $100 million in a 10-stock
portfolio using portfolio optimization techniques. The manager can hold
long and short positions in the portfolio. The minimum weight for a stock
in the portfolio is set by the fund at �5% and the maximum weight for a
stock in the portfolio is set by the fund at 20%. That is, the weights for
each stock in the portfolio is bounded by �0.05 � wi � 0.20. The fund
also requires that all initial position share quantities do not exceed 100%
of the stock’s average daily volume. Stock and optimization data for these
10 stocks are shown in Table 17.3.

The first step is to construct the EIF following the techniques above. This is
shown in Fig. 17.9. This 10-stock portfolio can have returns ranging from
7.1% to 17.9% and risk ranging from 10.7% to 26.5%. However, the effi-
cient frontier for this portfolio, which consists of the maximum return for
a level or risk and the least risk for a specified return, has returns ranging
from 9.15% to 17.9% and risk ranging from 10.67% to 26.46%. Notice
that this figure shows returns that are below 9.15% and are the lower region
in the frontier. Portfolio managers would not invest in these portfolios
because we could achieve a portfolio with a higher return and the same
risk. For example, at a level of risk of 11% it is possible to construct a port-
folio with an expected return of 8.36% and a portfolio with an expected
return of 10.04%. Rational investors, in this situation, would choose
the higher return portfolio (10.04%) because the risk of both portfolios is
the same.
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Table 17.2 Portfolio Optimization and Stock Data.

Stock Data Covariance Matrix

Stock
Estimated
Return Volatility ADV

Price
($) Stock A B C D E F G H I J

A 5.0% 10.00% 1,000,000 20.00 A 0.010 0.007 0.010 0.020 0.014 0.014 0.020 �0.002 0.020 �0.013

B 5.0% 15.00% 1,000,000 25.00 B 0.007 0.023 0.002 0.006 �0.010 0.004 0.002 �0.013 �0.003 0.023
C 10.0% 20.00% 5,000,000 75.00 C 0.010 0.002 0.040 0.015 0.015 0.022 0.027 0.035 0.012 0.035

D 10.0% 25.00% 5,000,000 15.00 D 0.020 0.006 0.015 0.063 0.028 0.035 0.049 0.066 0.030 �0.006

E 12.0% 22.00% 10,000,000 25.00 E 0.014 �0.010 0.015 0.028 0.048 0.046 0.040 �0.004 0.009 0.066

F 12.0% 28.00% 2,500,000 75.00 F 0.014 0.004 0.022 0.035 0.046 0.078 0.055 �0.015 0.056 0.070

G 15.0% 30.00% 25,000,000 125.00 G 0.020 0.002 0.027 0.049 0.040 0.055 0.090 0.074 0.030 0.045

H 15.0% 35.00% 15,000,000 100.00 H �0.002 �0.013 0.035 0.066 �0.004 �0.015 0.074 0.123 0.049 �0.026

I 18.0% 40.00% 1,000,000 50.00 I 0.020 �0.003 0.012 0.030 0.009 0.056 0.030 0.049 0.160 0.100

J 25.0% 50.00% 10,000,000 75.00 J �0.013 0.023 0.035 �0.006 0.066 0.070 0.045 �0.026 0.100 0.250



Table 17.3 Traditional Portfolio OptimizationdMean Variance OptimizationdMaximum Returns.

Optimization Results MI Parameters

Investment $¼ $100,000,000 a1 ¼ 925.00

Risk ¼ 15.00% a2 ¼ 0.35

Return ¼ 12.70% a3 ¼ 0.85

Net Return ¼ 12.25% a4 ¼ 0.70

MI Cost ¼ 0.45% b1 ¼ 0.96

Stock Weight
Investment
Dollars Return Volatility ADV

Price
($)

Trade
Shares

%
ADV

VWAP
Strategy

MI
(bp) MI ($)

Return
($)

Net
Return
($)

A 20.00% 20,000,000 5.00% 10.00% 1,000,000 20.00 1,000,000 100.0 50.0% 82.4 164,879 1,000,000 835,121

B 18.50% 18,501,739 5.00% 15.00% 1,000,000 25.00 740,070 74.0 42.5% 94.2 174,332 925,087 750,755

C 1.94% 1,939,626 10.00% 20.00% 5,000,000 75.00 25,862 0.5 0.5% 2.4 463 193,963 193,499

D �5.00% e5,000,000 10.00% 25.00% 5,000,000 15.00 �333,333 6.7 7.1% 21.1 e10,557 e500,000 e489,443

E 20.00% 20,000,000 12.00% 22.00% 10,000,000 25.00 800,000 8.0 7.4% 20.6 41,201 2,400,000 2,358,799

F 1.78% 1,782,943 12.00% 28.00% 2,500,000 75.00 23,773 1.0 0.9% 4.7 840 213,953 213,113

G �2.34% e2,337,413 15.00% 30.00% 25,000,000 125.00 �18,699 0.1 0.1% 1.2 e289 e350,612 e350,323

H 20.00% 20,000,000 15.00% 35.00% 15,000,000 100.00 200,000 1.3 1.3% 7.2 14,436 3,000,000 2,985,564

I 6.55% 6,545,631 18.00% 40.00% 1,000,000 50.00 130,913 13.1 11.6% 52.6 34,399 1,178,214 1,143,815

J 18.57% 18,567,474 25.00% 50.00% 10,000,000 75.00 247,566 2.5 2.4% 15.6 28,947 4,641,869 4,612,922

Total 100.00% 100,000,000 12.70% 15.0% 49.94 2,816,150 36.6 20.5% 44.86 448,649 12,702,473 12,253,823

0.45% 12.70% 12.25%



After analyzing the efficient frontier for these stocks, the manager deter-
mines that the appropriate level of risk for the portfolio is 15%. The optimal
portfolio is then determined via the following traditional optimization
process:

Max
w

X

wiri

s:t:

w0Cw ¼ ð0:15Þ2
X

wi ¼ 1

�0:05 � wi � 0:20

jwij$$100 million

Pi
� 1:00

Return in total dollars for each stock is calculated as follows:

Returnið$Þ ¼ ri$wi$$100 million

The next step in the process is to calculate the expected market impact cost
of the order. The manager decides to implement this investment decision
using a 1-day VWAP strategy. Market impact cost for each stock in the
optimized trade list is calculated using our I-Star model as follows:

I�i ¼ a1$Size
a2
i $sa3

i

MIiðbpÞ ¼ b1$I
�
i $POV

a4
i þ ð1� b1Þ$I�i

0.0%

5.0%

10.0%

15.0%

20.0%

5.0% 10.0% 15.0% 20.0% 25.0% 30.0%

Efficient Investment Frontier 

n FIGURE 17.9 Efficient Investment Frontier.
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where

Sharesi ¼ jwij$$100 million

Pi
$

1
ADVi

Sizei ¼ Sharesi
ADVi

POVi ¼ Sizei
1þ Sizei

To compute trading costs, we use the following market impact parameters:

a1 ¼ 925; a2 ¼ 0:35; a3 ¼ 0:85; a4 ¼ 0:70; b1 ¼ 0:96

Market impact cost in dollars is calculated as follows:

MIið$Þ ¼ MIðbpÞ$10�4$jwij$$100 million

Net return for each stock is calculated as returns minus market impact cost
as follows:

Net Returnið$Þ ¼ Returnið$Þ �MIið$Þ
This measure provides the portfolio manager with a realistic expectation of
returns after adjusting for market impact cost.

Net return for the portfolio is:

Net Returnð$Þ ¼
X

Net Returnið$Þ

Finally, we can express expected portfolio return and net return in tradi-
tional decimal units as follows:

Rp ¼
X

ri$wi

Net Rp ¼
XReturnið$Þ �MIið$Þ

$100 million

This is shown in Table 17.3.

Notice in this table that all the constraints are satisfied. The portfolio values
are:

Risk ¼ 15:00%

Return ¼ 12:70%

Market Impact ¼ 0:45%

Net Return ¼ 12:25%
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The portfolio manager, after reading this chapter, is curious whether it is
possible to do better than the portfolio optimization suggests. That is, is
it possible to start with a portfolio that is initially inefficient and irrational
strategy, but achieve higher net returns? After all, the net returns are
what is important to investors.

For example, Fig. 17.10 shows the efficient frontier for our 10-stock portfo-
lio. Portfolio A represents an efficient and rational strategy because it has the
highest expected return for the specified level of risk and the lowest risk for
the return. Portfolio B, on the other hand, represents an irrational and ineffi-
cient strategy because it does not have the highest expected return for the
specified level of risk.

Is it possible to start with irrational and inefficient portfolio B and achieve
higher net returns (after incurring market impact cost) than can be achieved
by starting with portfolio A? And, if so, how?

To answer this question, we set out to optimize for net returns. This optimi-
zation, however, is much more complex than traditional quadratic program-
ming portfolio optimization, but as we see below, it allows portfolio
managers to obtain the highest net returns possible.

This optimization process is our portfolio optimization with TCA and is as
follows:

Max
w

X

ðwiri �MIiÞ

s:t:

w0Cw ¼ ð0:15Þ2

5.0%

10.0%

15.0%

20.0%

5.0% 10.0% 15.0% 20.0% 25.0% 30.0%

Efficient Investment Frontier 

Series1 Series2

A 

B 

n FIGURE 17.10 Efficient Investment Frontier with Suboptimal
Strategy.
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X

wi ¼ 1

�0:05 � wi � 0:20

jwij$$100 million

Pi
� 1:00

where

I�i ¼ a1$Size
a2
i $s

a3
i

MIiðbpÞ ¼ b1$I
�
i $POV

a4
i þ ð1� b1Þ$I�i

MIi ¼ MIiðbpÞ$10�4

Sharesi ¼ jwij$$100 million

Pi
$

1
ADVi

Sizei ¼ Sharesi
ADVi

POVi ¼ Sizei
1þ Sizei

The results of this optimization are shown in Table 17.4. Notice in this table
that the portfolio risk is the same as the traditional optimization process,
Risk ¼ 0.15. The expected return before market impact cost is 12.66%.
This is 4 bp lower than the expected return for the traditional portfolio opti-
mization process. The market impact cost in this example is 0.37%, which is
lower than the traditional portfolio optimization process. Thus the net return
for the portfolio is 12.30%, which is higher than the net return of the tradition
portfolio optimization, which was 12.25%. Therefore by incorporating mar-
ket impact cost directly into the portfolio optimization phase we achieve an
additional 5 bp in performance.

Fig. 17.11 illustrates the different starting portfolios. In this figure, portfolio
A represents the initial pretrading cost-efficient and rational portfolio, and
portfolio B represents the initial pretrading cost-irrational and inefficient
portfolio. Portfolio A* and portfolio B* represent the net returns for these
portfolios after accounting for market impact cost. Interestingly, the net
returns from B are higher than from A. This suggests that it is indeed possible
to start with an irrational and/or inefficient portfolio and achieve higher net
returns than by staring with a rational and efficient portfolio.
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Table 17.4 Portfolio Optimization With Transaction Cost Analysis dMaximize Net Returns.

Optimization Results MI Parameters

Investment $ ¼ $100,000,000 a1 ¼ 925.00

Risk ¼ 15.00% 15.00% a2 ¼ 0.35

Return ¼ 12.66% a3 ¼ 0.85

Net Return ¼ 12.30% a4 ¼ 0.70

MI Cost ¼ 0.37% b1 ¼ 0.96

Stock Weight
Investment
Dollars ($) Return Volatility ADV

Price
($)

Trade
Shares

%
ADV

VWAP
Strategy

MI
(bp) MI ($)

Return
($)

Net
Return
($)

A 18.35% 18,351,411 5.00% 10.00% 1,000,000 20.00 917,571 91.8 47.9% 77.7 142,637 917,571 774,934

B 15.16% 15,162,839 5.00% 15.00% 1,000,000 25.00 606,514 60.7 37.8% 81.3 123,345 758,142 634,797

C 7.24% 7,240,905 10.00% 20.00% 5,000,000 75.00 96,545 1.9 1.9% 5.9 4274 724,090 719,817

D �5.00% e5,000,000 10.00% 25.00% 5,000,000 15.00 �333,333 6.7 7.1% 21.1 e$10,557 e500,000 e489,443

E 20.00% 20,000,000 12.00% 22.00% 10,000,000 25.00 800,000 8.0 7.4% 20.6 41,201 2400,000 2,358,799

F 5.02% 5,015,734 12.00% 28.00% 2,500,000 75.00 66,876 2.7 2.6% 10.1 5078 601,888 596,810

G �3.13% e3,130,359 15.00% 30.00% 25,000,000 125.00 �25,043 0.1 0.1% 1.4 e442 e469,554 e469,112

H 20.00% 20,000,000 15.00% 35.00% 15,000,000 100.00 200,000 1.3 1.3% 7.2 14,436 3,000,000 2,985,564

I 5.11% 5,106,233 18.00% 40.00% 1,000,000 50.00 102,125 10.2 9.3% 42.3 21,615 919,122 897,507

J 17.25% 17,253,238 25.00% 50.00% 10,000,000 75.00 230,043 2.3 2.2% 14.7 25,395 4,313,310 4,287,914

Total 100.00% 100,000,000 12.66% 15.0% 52.48 2,661,298 28.8 17.0% 36.70 366,981 12,664,569 12,297,588

0.37% 12.66% 12.30%



Fig. 17.12 illustrates these results in a slightly different manner. The figure
shows the expected returns for two portfoliosdA andand B. Portfolio A was
determined via traditional portfolio optimization techniques. Portfolio B was
determined via portfolio optimization with TCA. Notice that the expected re-
turn for portfolio A is higher than portfolio B, that is, 12.70% (A) is higher
than 12.66% (B). The risk for both these portfolios is 15.0%. Therefore on
the surface it appears that portfolio A is a better choice than portfolio B
because it has higher return for the same risk. However, after accounting
for market impact cost, portfolio B has a higher net return than portfolio
A. That is, 12.30% (B) is higher than 12.25% (A). Informed investors would
then always select portfolio B over portfolio A because it has higher net
returns. The incorporation of TCA into the optimization process results in
a 5 bp increase in portfolio improvement in this example.

Fig. 17.13 provides a comparison of the weights for stocks in the two port-
folios. Notice that the weights are the same and/or similar for some stocks.
But there could be large differences at times. In our example, the optimiza-
tion process did not change the side of the position holding (e.g., we were
long and short the same stocks), but this may vary depending on the optimi-
zation conditions and constraints, and stock data.

Important Findings
1. It is important to note that the incremental 5 bp improvement in portfolio

returns is achieved without any additional research and without needing
to uncover any new or additional profiting opportunities. This 5 bp in
increased performance is achieved simply by optimizing on net returns.
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2. The actual increase in portfolio performance resulting from incorporating
market impact cost into the portfolio optimization objective function will
vary by trade list, investment dollars, number of stocks, constraints, and
stock data. This technique, however, will only find higher returns or the
same returns as traditional portfolio optimization processes. This tech-
nique will never result in lower returns. In the worst-case scenario, port-
folio optimization with TCA will find portfolios with the same return as
traditional portfolio optimization techniques. In the best-case scenario,
this process will uncover portfolios with higher returns, and in some
cases much higher returns.
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3. These findings follow those of Chung and Kissell (2016). In that study,
the authors analyzed four portfolio groups: 50-stock and 100-stock port-
folios, and investment values of $500 million and $1 billion. The analysis
found that for the 50-stock portfolio, optimization with TCA provides an
improvement from 4.5 to 8.2 bp on average and as high as 7.6e3.5 bp for
some scenarios. The analysis found that for the 100-stock portfolio, opti-
mization with TCA provides an improvement of 3.2e7.0 bp on average
to as high as 5.0e10.2 bp. Additionally, in some scenarios, using
different portfolio values, number of stocks, trading times, and market
cap universe, optimization with TCA provided net return increases
exceeding 25 bp. In portfolio scenarios with the larger investment dollar
value and a larger number of stocks the results were not as dramatic, but
the approach still determined a portfolio with ex-post higher net return.

CONCLUSION
In this chapter we presented a process to unify the investment and trading
theories. We presented a framework that overlays the ETF onto the EIF (in-
vestment frontier) to determine a set of cost-adjusted frontiers. The analysis
showed that while a traditional AlmgreneChriss trade cost optimization
will result in numerous efficient strategies there is only a single “optimal”
execution strategy consistent with the underlying investment objective.

The analysis also shows that a traditional VWAP strategy is not consistent
with the investment objective and may compromise the portfolio manager’s
stock selection ability by resulting in lower levels of investor utility. The
reason is that the corresponding VWAP frontier is inferior (lies below) to
the cost-adjusted frontier. Furthermore, an overly aggressive execution
strategy is also an inappropriate strategy because its cost-adjusted frontier
lies below the optimal cost-adjusted frontier. To maximize investor utility
it is essential that the trading strategy does not incur too much impact
(aggressive strategy) or too much risk (VWAP strategy). Doing so is likely
to result in subpar performance.

In the last part of this chapter we presented a methodology to incorporate
variable trading cost estimates (market impact and timing risk) directly
into the investment optimization process. Recent attempts in this arena
have been insufficient since resulting cost estimates have only been depen-
dent upon the number of shares transacted not on the overall list composi-
tion. Managers could achieve performance improvement by incorporating
market impact cost estimates directly into the investment process such
that costs will be dependent upon shares transacted and trading strategy tak-
ing advantage of overall risk reduction. This in turn could dramatically
reduce the overall cost of the list.
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The resulting procedure, however, is a relatively difficult nonlinear multi-
period optimization problem but recent advancements in optimization rou-
tines and computational power allow the required formulation to be solved
quickly and efficiently, for example, see Malamut (2002) and www.
KissellResearch.com.

The appropriate optimization technique is based on a multiperiod process
that segments the time horizon into a trading period where shares are trans-
acted and an investment holding period where there are no further changes
to the portfolio. With this new multiperiod formulation it is possible that a
suboptimal Markowitizian portfolio (e.g., below the investment frontier)
will result in better performance and higher utility due to more favorable
trading statistics (liquidity andand volatility). We refer to this set of ex-
ante optimal portfolios as the best execution frontier.

To summarize, our main findings in this chapter are:

n There exist multiple sets of cost-adjusted frontiers for every efficient
portfolio on the EIF.

n This is a single “optimal trading strategy” that is consistent with the in-
vestment objective resulting in a single optimal cost-adjusted frontier.
This is the best execution strategy for the investment portfolio.

n The proper level of risk aversion for a trade cost optimization to be
consistent with investment objective of the fund is the Sharpe ratio of
the portfolio, or the forecasted Sharpe ratio of the investment decision.

n Evidence that a VWAP strategy is seldom consistent with the investment
objectives may lead to suboptimal portfolio and lower levels of investor
utility.

n A formulated multiperiod investment portfolio optimization problem
considers both market impact cost and trading risk with the investment
decision and least to best execution frontier.

n The formulated model provides opportunity to achieve cost reduction
from a diversified trade list.

n The formulated model provides the preferred portfolio and correspond-
ing road map (trade strategy) to build into those holdings.

n Market impact dominates ex-post performance much more than timing
risk. Market impact results in a direct reduction in cost, whereas timing
risk is a subadditive function and does not have the same linear relation-
ship with portfolio risk.

n Posttrade analysis needs to incorporate the estimated costs of the trade
(e.g., market impact and trading risk), and not solely rely on a benchmark
price.
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Chapter18
Quantitative Analysis with TCA

INTRODUCTION
Transaction cost analysis (TCA) has become an important decision-making
tool for portfolio managers. It allows managers to uncover hidden opportu-
nities that may otherwise not be as transparent, especially given the vast
array of data propagating the marketplace. Portfolio managers who once
treated transaction costs as an unavoidable cost of business have turned to
TCA as a valuable source of incremental alpha. TCA has finally made it
to mainstream portfolio management.

Below are just a few ways that TCA is being incorporated into the stock
selection phase of the investment cycle.

Quantitative Overlays
Managers select the universe of stocks for potential inclusion into the portfo-
lio. They then determine a subset of stocks from that universe thatmeet a spec-
ified investment criterion such as market cap, price to earnings, book value,
forecasted profit, etc. As a final filter, managers further reduce the potential
investment list based on the expected trading cost. Stocks that are too expen-
sive to transact are eliminated from potential inclusion into the portfolio.

Market Impact Factor Scores
A market impact factor score incorporates both liquidity and volatility to
rank stocks based on trading cost. The higher the score, the more expensive
it is to transact the stock. The market impact factor score provides an equal
and fair comparison across all stocks. We show below that market impact
factor scores provide a large benefit over other techniques that simply
rely solely on liquidity or volatility (such as a maximum % average daily
volume [ADV] to hold in the portfolio).

Cost Curves
Cost curves provide managers with the expected market impact cost for
various share quantities and execution strategies. Share quantities are

Algorithmic Trading Methods, Second Edition. https://doi.org/10.1016/B978-0-12-815630-8.00018-1
Copyright © 2021 Elsevier Inc. All rights reserved. 469

https://doi.org/10.1016/B978-0-12-815630-8.00018-1


usually expressed in terms of percentage of ADV and the strategies are usu-
ally expressed in terms of percentage of market volume (POV rate) or in
terms of trading time.

Alpha Capture
Managers determine the expected profit level of an investment idea based
on the stock’s projected alpha and the corresponding trading cost. This
helps to maximize expected ex-post stock return (e.g., returns after incurring
trading cost). Managers then select stocks based on ex-post return.

Investment Capacity
Investment capacity determines how many shares of a stock can be trans-
acted before the trading cost erodes the expected stock return beyond a
specified level. For example, suppose that a manager has determined that
an investment strategy is expected to achieve an incremental return of 3%
over its benchmark. The manager turns to TCA to determine how many
shares can be purchased with a trading cost equal to the incremental return
of 3%. After this point, the manager is better off investing in their next most
attractive investment idea.

Portfolio Optimization
Portfolio optimization techniques are being developed to provide managers
with the “optimal” weightings and the underlying transaction strategy to
achieve those positions. These optimizations incorporate expected returns,
volatility, correlation, and market impact to determine the optimal mix of
stock. Market impact cost is determined from the underlying market impact
model parameters. And the resulting execution strategy is the “best execu-
tion” strategy that provides exact consistency between investing and trading
decisions. The optimization technique will take advantage of any synergies
resulting from diversification or market hedging opportunities. Portfolio
optimization with TCA has become one of the leading areas of research
for portfolio managers and is discussed in the chapter Portfolio Construction
with Transaction with Transaction Cost Analysis.

Backtesting
Managers use market impact backtesting series to test investment ideas and
determine if those ideas will be profitable in different market conditions. All
too often, however, managers find a strategy works well in the backtesting
environment but once the strategy goes live it does not provide the expected
level of return due to implementation costs. Some of the more
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forward-thinking managers have begun incorporating historical trading
costs into their backtesting scenarios. The biggest issue we have encoun-
tered here is that while there are participants providing historical costs these
are based on the actual market structure and actual cost of trading at that
specific point in time. This could result in dramatically overstating the
true cost of trading (such as early to mid-1990s) when stocks were quoted
in 1/8s (well, really odd-eights or quarters, see Christie and Stoll, 1994).
Overstating the true costs in a backtesting environment could have the
opposite results and cause managers to eliminate an investment idea
because of its being cost prohibitive when in fact its costs may be much
lower now given market structure improvements and increased efficiency
from competition. It is imperative that any cost index developed for back-
testing is based on today’s market structure, regulations, and competition,
and the trading characteristics at the historical point in time (liquidity, vola-
tility, size, etc.). Only then can a manager determine the strategy’s true
feasibility and the realistic return expectations of the investment idea.

Liquidation Cost
The cost of trading, unfortunately, is not symmetric. The cost to enter (buy)
the position is usually less expensive than the cost to exit (sell) the position.
This cost, however, is not due to any structural difference between buying
and selling stock, but rather it is due to a difference in the underlying invest-
ment decision at the time of the stock purchase and stock sale. Managers
will buy stocks under the most advantageous market conditions and sell
stock under more dire circumstances. For example, managers tend to buy
stocks with attractive company fundamentals, low volatility, and at times
when there is liquidity. But managers tend to sell stocks when they fall
out of favor, when company fundamentals tank, volatility spikes, and
liquidity dries up. All of which increase trading cost.

Sensitivity Analysis
Managers are beginning to incorporate their own market views in invest-
ment planning phases. Managers are performing sensitivity analysis to bet-
ter determine trading cost under various scenarios such as increased and
decreased volatility scenarios such as was present during the financial crisis
of 2008e09. Portfolio managers who can incorporate their views on market
conditions will improve the portfolio construction process, which will result
in portfolios that are more consistent with their underlying investment
objective.

Introduction 471



ARE THE EXISTING MODELS USEFUL ENOUGH FOR
PORTFOLIO CONSTRUCTION?
The needs of traders and portfolio managers are very different when it
comes to market impact analysis. Traders use market impact models to es-
timate trading costs, and to evaluate and select trading algorithms. Portfolio
managers use market impact models for cost estimates that can be incorpo-
rated directly into the stock selection process. Portfolio managers, however,
need to be able to run these models independently of brokers and vendors so
that these parties will not have any opportunity to reverse engineer the man-
ager’s decision-making process. Managers also need to be able to perform
sensitivity and what-if analysis to determine the cost of trading under
various market conditions. Managers need to be able to incorporate their
own proprietary view of markets, including their volatility and liquidity es-
timates, as well as their proprietary alpha estimates. Finally, managers do
not want to be reliant upon what other brokers and vendors feel are appro-
priate values for the input variables, especially if these views differ from
their own.

The current state of market impact models falls well short of the needs of
portfolio managers. Broker models are often black box models, and most
do not provide managers with sufficient transparency into the approach to
allow managers to evaluate or critique the results. Much of the reason
why brokers keep these models so secretive and hidden is that they do
not want the investment community to judge their models. To test this point,
simply ask the broker salesperson to write the formulation of their market
impact model, the definition of their input variables, and the model param-
eters. Then sit back and observe their responses. And if these parties do pro-
vide this information, try to duplicate their results for a few different
samples of stocks.

Brokers will usually state numerous reasons why they are unable to provide
their model to the client. They often claim that the model needs to be con-
nected to a tick database, that the model is specific for their algorithms, and
that the model uses a proprietary approach, or that the data cannot be redis-
tributed. Regardless of the reason stated, investors should be extremely
cautious of using any model or approach that is not amply described or
transparent. These models must be analyzed, tested, and verified.

To be fair, there may be some truth to why these models cannot be provided
to the client. But it is still likely that the vendor is hesitant to provide the
functional form because it may reveal that the model is not nearly as com-
plex or sophisticated as claimed. Keeping the functional form of market
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impact models hidden from potential uses makes it difficult for users to
properly evaluate the model.

Suffice to say that current industry market impact models have not evolved
to levels needed by portfolio managers. A summary of these reasons, as
stated in the Journal of Trading (see Kissell, 2012), is as follows:

Current State of Vendor Market Impact Models
n Vendor models are black box approaches with no transparency. They do

not provide the underlying formulas and often do not provide the com-
plete set of input variables and explanatory factors used to estimate costs.
And while many of these models do provide accurate pretrade estimates,
their lack of transparency does not allow portfolio managers to perform
“what-if” analysis under various scenarios, or incorporate their own mar-
ket expectations and alpha views into the process.

n Pretrade cost calculations are often performed on the vendor’s server.
Managers need to pass their portfolio from their site to the vendor’s
server to obtain cost estimates. When portfolio holdings, data, or infor-
mation leave the manager’s site there is always the potential for informa-
tion leakage allowing the outside party to reverse engineer the manager’s
decision process. This could be detrimental to funds’ competitive edge.

n Pretrade impact models incorporate the vendor’s market expectations.
These systems do not easily allow managers to revise factor expecta-
tions. For example, these models do not allow managers to change vola-
tility, ADV, or expected liquidity over the trading horizon. If managers
have better forecasts of explanatory variables there is no easy way for
them to incorporate these values into the pretrade estimates. And even
if vendors make necessary provisions, there is still no way to do so
without alerting these vendors of their own proprietary forecasts.

n Portfolio managers are very sensitive to alpha erosion. In other words,
how much of their alpha they will capture given trading costs. But since
managers are reluctant to pass these alpha estimates to any vendor’s sys-
tem these models are not able to structure strategies to minimize alpha
erosion. Furthermore, managers should suspect any party providing
alpha estimates for free and to a large array of customers.

n Constructing in-house market impact models is resource intensive and
time consuming. Firms developing in-house models using their own
trade data have the advantage of knowing the full order size, including
shares cancelled and the decision price, and they can also incorporate
their own proprietary market views into the cost estimate. This allows
the market impact model to be customized for the fund’s specific invest-
ment behavior. But this still does not allow the fund to perform thorough
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sensitivity analysis for a situation where they want to analyze an order
that may be traded differently than it was in the past because they do
not have any historical observations. These models could potentially suf-
fer from in-sample bias.

The current approach being used by managers to incorporate TCA estimates
into the stock selection process is to utilize systems such as vendor/broker
websites, application programming interfaces (API), etc. Managers are
asked to send their portfolios or potential portfolios to the vendor so that
they can perform analysis. The vendor will then analyze the basket, estimate
costs, and send the results back to the manager.

This approach, however, requires that the information is passed from the
manager’s site to the vendor’s server where the data will be computed,
and possibly even stored, before being sent back to the manager. Investors
who are using the process need to ensure that their data queries are not be-
ing saved or stored at the vendor or broker site without their prior approval.
If the data are stored on the vendor’s site this could potentially allow parties
outside the manager’s firm to reverse engineer the investment decision.

To alleviate this fear, some vendors provide results of their models to man-
agers in the form of cost curves and include a specified universe of stocks
with various sizes and execution strategies. Portfolio managers can query
and filter these data points for the stocks they are interested in analyzing,
but this is a very inefficient process and requires an iterative approach to
determine optimal solutions.

Portfolio managers continuously state that they are leery of anything that
could potentially result in any kind of information leakage or reverse engi-
neering of the investment decision process. And rightly so! It is the stock
selection and portfolio construction process that is the true value of the man-
ager. Even if managers use a verified secure file transfer protocol or API
protocol that is not viewable by the vendor, the process still does not allow
investors to incorporate their own proprietary variables into the analysis.
For example, they still cannot integrate proprietary volatility estimates or
expected liquidity conditions into the model to perform “what-if” analysis.
And we have yet to meet a portfolio manager willing to share their propri-
etary alpha estimates with any outside party to improve pretrade analysis.

If the vendor or broker will not provide the model to managers, what are
they to do? Managers could develop their own market impact model using
tick data or by incorporating their own inventory of orders and trades to
calibrate the model. But this is often very time consuming, resource inten-
sive, and could suffer from in-sample error if they rely only on their own
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trade data. An alternative approach is for managers to develop and build
their own models but incorporate broker and vendor pretrade cost estimates
to calibrate the model. This will also allow the managers to incorporate their
proprietary views of liquidity, volatility, and even their own alpha.

This latter approach is referred to as the pretrade of pretrade approach and it
has become very popular among portfolio managers. An abstract of the
approach was published in the Journal of Trading (Kissell, 2011), and sub-
sequently presented at the Northfield Risk Conference (August 2012). We
follow the process described in the Journal of Trading below.

PRETRADE OF PRETRADES
The pretrade of pretrade modeling approach consists of using broker-dealer
and/or vendor cost estimates as input into the market impact model. Man-
agers then calibrate their preferred market impact model with these cost es-
timates. This allows managers to focus on stock selection and analysis
rather than spending valuable resource time and dollars managing data,
corporate actions, and building system infrastructure.

But why can’t a portfolio manager request cost estimates for various stocks
and trading strategies across different brokers and vendors, and then take
the average cost as the estimate rather than calibrating their own model?
While this type of approach is being used in the industry it does have
some limitations:

n First, it does not provide managers with the ability to determine how
costs will vary by company characteristics such as volatility, market
cap, or liquidity states. For example, if volatility in the stock increased,
what would be its effect be on cost?

n Second, the modeling approach used by vendors is still a black box
approach and does not have a functional form that allows managers to
integrate into their proprietary stock selection models.

n Third, managers cannot express their views of market conditions (vola-
tility and liquidity) or incorporate their own proprietary alpha estimates.
There is always the potential that the vendor’s view of the market condi-
tionswill be dramatically different from the viewof the portfoliomanager.
This creates another level of inconsistency between trading and investing.

n Finally, these approaches do not allow managers to perform sensitivity
analysis. For example, managers need to be able to investigate the cost
of buying stock in the current market environment and can investigate
the cost of selling stock at a future point in time and under an entirely
different set of market conditions.
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The pretrade of pretrade cost estimation process is described in detail in the
chapter Decoding and Reverse Engineering Broker and Vendor Models Us-
ing Machine Learning. Analysts can implement this approach without
revealing their hand to their brokers simply by using a financial data pro-
vider such as Bloomberg since many brokers have embedded their pretrade
models into these financial systems. Managers can generate large enough
sample trades through these systems to calibrate the pretrade of pretrade
model without their brokers becoming any wiser or learning their true inten-
tions (see also Kyle, 1985).

Applications
We are now at a point where we can begin to incorporate our pretrade mar-
ket impact cost estimates into the investment decision process for stock se-
lection, portfolio optimization, alpha capture, and “what-if” analysis.

The model we will us for our analysis is:

MIbp ¼ 793$Size0:57$s0:78$POV0:52

We next illustrate how our pretrade of pretrade model can be used to
address various portfolio manager needs. This builds on Journal of Trading,
Creating Dynamic Pretrade Models: Beyond the Black Box (Fall 2011).

Example #1
An investor wishes to determine expected impact cost for RLK for an order
of 10% ADV utilizing a POV ¼ 20% strategy. The volatility of RLK is
20%.

The pretrade of pretrade (aggregated model) cost estimate is computed from
the following:

MIbp ¼ 793$ð0:10Þ0:57$ð0:20Þ0:78$ð0:20Þ0:52 ¼ 26:3bp

The average cost from the three brokers is 24.5 bp and the estimated cost
using our pretrade of pretrade model is 26.3 bp. Notice that the estimate
from the pretrade of pretrades is consistent with the average of the vendor
models.

The advantage now is that the average estimated cost across brokers can be
computed directly using our equation above without having to access broker
models or shift through broker data. The pretrade of pretrades is an impor-
tant tool for those parties wishing to minimize information leakage.
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Example #2
Next, suppose the portfolio manager expects volatility in RLK to jump from
20% to 40%. What is the expected market impact cost for the same order
with the new volatility estimate?

The only way the PM can obtain estimates from the three brokers is to pro-
vide the brokers with their proprietary volatility forecast 40% and ask the
broker to rerun the scenario with this volatility estimate. But it is likely
that the portfolio manager will not be willing to provide any broker with
their market view and proprietary expectations for any stock.

But in the case of the aggregated pretrade of pretrade cost model the port-
folio manager can easily recompute the cost estimate with the new volatility
estimate directly. This is as follows:

MIbp ¼ 793$ð0:10Þ0:57$ð0:40Þ0:78$ð0:20Þ0:52 ¼ 45:2bp

Portfolio managers can generate these estimates incorporating their expec-
tations without providing proprietary information to brokers.

Example #3
The portfolio manager is interested in the cost of transacting an order of
7.5% ADV of stock ABC using a full-day volume-weighted average price
(VWAP) strategy. But unfortunately the manager did not request cost esti-
mates for this size order from their brokers. The options for the portfolio
manager are to request cost estimates for ABC from their brokers but
then the brokers would now know that the manager is interested in stock
ABC, or interpolate cost estimates for this scenario. Unfortunately, linear
interpolation is not a direct process because neither the order size nor
POV rate was provided by any of the brokers. But it still can be done in
three steps.

The portfolio manager can easily utilize the aggregate pretrade model to
determine the expected cost under this scenario. This calculation is:

MIbp ¼ 793$ð0:075Þ0:57$ð0:30Þ0:78$ð0:0698Þ0:52 ¼ 17:7bp

Example #4
A portfolio manager is evaluating a worst-case scenario to liquidate a 10%
ADV position of RLK under extreme situations using a full-day VWAP
strategy. The PM is interested in the cost to liquidate the position if vola-
tility spikes to 40% and volume on the trade day is only half of its normal
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volume. Here, the POV rate for the full-day VWAP strategy is 0.10/
(0.5 þ 0.10) ¼ 0.167.

Once again, the broker models are not flexible enough to provide cost esti-
mates for this situation without the portfolio manager providing the brokers
with proprietary volatility and liquidity. But we can utilize the aggregate
pretrade model to determine the expected cost under this scenario. This
calculation is:

MIbp ¼ 793$ð0:10Þ0:57$ð0:40Þ0:78$ð0:167Þ0:52 ¼ 41:1bp

Notice once again that this cost is significantly higher than what we would
find from any of the vendor pretrade models under current market
conditions.

The more important concepts of the pretrade of pretrade modeling approach
are:

n Simplified I-Star provides a valuable starting point and serves as an
appropriate workhorse model.

n This allows investors to infer essential information from broker black
box models.

n Vendor pretrade models incorporate the current point in time variables
such as current volatility and current liquidity conditions. But we often
want to understand the exit costs that will occur under an entirely
different set of market conditions.

n Managers can incorporate their own market views into the analysis (e.g.,
volatility, liquidity, as well as proprietary alpha signals).

n Managers can perform analyses independent of other brokers and ven-
dors (minimizes information leakage).

n A transparent model allows stress testing, what-if, and sensitivity analysis.

HOW EXPENSIVE IS IT TO TRADE?
All too often we hear portfolio managers complain that their incremental
alpha was lost during trading and the fund underperformed their benchmark
due to transaction costs. But how true is this statement? Is the underper-
formance due to the transaction drag on the fund or is it due to inferior stock
selection? As we show below, the corresponding trading cost of an invest-
ment idea is often much more expensive than originally anticipated. And
this is especially true when managers liquidate a position (e.g., sell the
holding).
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To begin, let us compare trading costs across large cap (SP500) and small
cap (R2000) stocks. Table 18.1 provides the average trading characteristics
for these samples (as of June 2012). For example, the average daily trading
volume for an SP500 stock is 5,666,180 shares per day, and the average
daily trading volume for an R2000 stock is 503,553 shares per day. On
average, SP500 stocks trade 11.25 times more daily share volume than
R2000 stocks. The average daily dollar turnover value in these names is
even more exaggerated. An SP500 stock trades $202,511,240 per day and
an R2000 stock trades only $6,674,599 per day. This is more than 30 times
the traded dollars per day per stock in SP500 names than in R2000 names.
Additionally, R2000 stocks have higher volatility and larger spreads than
SP500, thus also increasing trading costs.

What does this have to do with trading costs? Well, everything. Trading
costs are usually stated for order sizes or share quantities expressed in terms
of %ADV. In these cases, when we compare the actual cost of trading
across SP500 and R2000, the difference between the stock categories is
large but not outrageously large. And the difference is mostly due to vola-
tility, spreads, company-specific risk, and higher perceived information-
based trading in small cap stocks compared to large cap stocks.

For example, the average cost of trading an order of 10% ADV via a VWAP
strategy is 19.8 bp for large cap and 27.8 bp for small cap. Small cap stocks
are 70% more expensive. Utilizing a POV ¼ 20% strategy the cost is
37.4 bp for large cap and 55.7 bp for small cap. Small caps are 149%
more expensive. Much of this difference, as mentioned, is explained by
small cap volatility (43%) being higher than large cap volatility (30%),
and small cap spreads (49 bp) being higher than large cap spreads
(3.3 bp). Fig. 18.1 shows this difference in trading cost across various order
sizes for large and small cap stocks for a POV ¼ 20% strategy.

Table 18.1 Comparison of Trading Characteristics: June 2012.

Index
Avg Dollar
Turnover*

Avg Daily
Volume*

Avg
Price

Avg
Volatility

Avg
Rho

Median
Spread (cps)

Median
Spread (bp)

SP500 202,511,240 5,666,180 $54.28 30% 0.57 1.80 3.32

R2000 6,674,599 503,553 $20.34 43% 0.39 10.01 49.16

Net Difference 195,836,641 5,162,627 $33.93 �13% 0.18 �8.21 �45.84

Ratio 30.34 11.25 2.67 0.70 1.45 0.18 0.07

*Stock level averages, e.g., the average daily volume for an SP500 stock was 5,666,180 shares per day in June 2012.
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The trading cost difference between large and small cap stocks becomes
even more dramatic when we analyze the dollar amount of a trade. For
example, if we invest $5 million in a large cap stock this results in an
average order size of 5.8% ADV and a cost of 17.6 bp (POV ¼ 20%).
But the same amount invested in a small cap stock results in an average
size of 394% ADV and a cost of 266.6 bp (POV ¼ 20%). This now makes
it more than 15 times more expensive to trade small caps compared to large
caps for the same dollar investment. This is an outrageous difference!
Fig. 18.2 shows the comparison of trading costs across large and small
cap stocks across equivalent dollar amounts. Notice how dramatically
more expensive small cap stocks are to transact compared to large cap stocks
even when holding the execution strategy constant (POV ¼ 20%).

Another useful way to compare trading costs is by total dollar allocation.
For example, index funds allocate their dollar investment across stocks
based on the stocks’ weightings in the index. Stocks with higher weightings
receive a large dollar investment and stocks with smaller weightings receive
a smaller dollar investment. A $3 billion investment allocated to each index
based on market capitalization weightings results in an average order size of
2.8% ADV for SP500 and a corresponding cost of 10.4 bp. The same in-
vestment in the R2000 index results in an average order size of 42.8%
and corresponding trading cost of 101.4 bp. Small cap stocks are 9.7 times
more expensive to trade than large cap stocksdeven for a passive index
fund. This differential is especially dramatic considering that the dollars
are allocated across a much larger number of stocks for the R2000 index
(1992 stocks in June 2012) compared to the SP500 index (500 stocks in
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June 2012). Fig. 18.3 compares the difference in trading costs for various
investment amounts across market cap-weighted replication of the indexes.

Table 18.2 shows the estimated market impact parameters for large and small
cap stocks using data from 2011.

Acquisition and Liquidation Costs
An important issue that needs to be fully understood in the portfolio man-
agement process is that the cost to acquire a position is often lower than the
cost to liquidate that same position. Earlier we mentioned that we have not
found any true statistical difference between the cost to buy shares and the
cost to sell shares. So how can this be true? First, the cost to buy and sell
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shares is the same when everything else is the same such as volatility, mar-
ket volumes, and incremental buying and selling pressure from other inves-
tors. Quite often, however, market participants observe and data confirms
that buy orders are less expensive to transact than sell orders. But we
have found that this is due to managers selling stocks more aggressively
as well as survivorship bias where managers have a complementary stock
to buy when prices become too expensive but they do not have a comple-
mentary stock to sell when the company has fallen out of favor.

But what also occurs is that the stock volatility has spiked and liquidity has
decreased. Even in cases where there is more trading in the name (such as
during the financial crisis), the amount of transactable liquidity is often
much lower because there are several investors on the same side of the order
as the manager, thus everyone is competing for the smaller liquidity pool,
all of which increases the cost to trade. Portfolio managers buy in times
of favorable conditions and sell in times of adverse conditions and market
stress. For example, an index manager may hold 5% of the ADV of a stock
in the portfolio. If this stock is suddenly deleted from the index the expected
trading cost to liquidate the position will likely be greater than the expected
cost of trading an order of 5% ADV. This is because all index managers
who own the stock will have to sell the shares and liquidate the position
from their portfolio and thus the aggregated market selling pressure will
be equal to the aggregated number of shares that need to be sold. In
many situations, the number of shares that need to be transacted due to
an index reconstitution could be much greater than 100% of the stock’s
ADV. Thus the trading cost for the index event trade is dramatically higher
than the costs that would occur from a nonindex event trade.

To further highlight this point, we examined a $100 million small cap port-
folio comprised of 100 stocks. The average order size corresponding to this
investment amount is 35% ADV and the volatility 42%. If the portfolio is
purchased via a full-day VWAP strategy, the expected cost is 106 bp. This
is a very realistic cost estimate for a small cap strategy under normal market
conditions. But now suppose that liquidity has dried up and volatility has

Table 18.2 Estimated Market Impact Parameters.

Scenario a1 a2 a3 a4 b1

All Data 708 0.55 0.71 0.50 0.98

SP500 687 0.70 0.72 0.45 0.98

R2000 702 0.47 0.69 0.55 0.97

Source: Kissell Research Group (2011).
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spiked. If transactable liquidity is now only half of normal levels and vola-
tility has doubled, the cost to liquidate the position will jump from 106 to
215 bp. Costs are more than two times more expensive to sell than to buy.
This was caused by market conditions at the time of the sell and not due to
any difference in buying or selling sensitivity.

The overall roundtrip trading cost of this strategy is approximately 321 bp.
If the manager was expecting and planned for a roundtrip transaction cost of
200e220 bp they would quickly realize that the liquidation cost of the po-
sition eroded their entire incremental alpha and caused them to incur a loss.
And the result is likely that they underperformed their benchmark.

Fig. 18.4 shows the market impact cost to acquire each of the 100 stocks in
our example. Notice the extent that this cost can vary across all names in the
portfolio. The range of cost is from 21 bp (least expensive) to 271 bp (most
expensive). The actual cost to trade is determined from the dollar allocation
to each name as well as the stock’s liquidity (ADV) and volatility. And as
this analysis showsdactual trading cost by stock can vary tremendously.

Fig. 18.5 shows the market impact cost to liquidate each of the 100 stocks in
our example. The stock-by-stock cost in this example varies from 45 to
527 bp with an average of 215 bp. Again, notice how much higher the liqui-
dation cost is compared to the acquisition cost shown in Fig. 18.4.

Formulaically, the liquidation cost in a stressed trading environment
computed directly from the simplified I-Star market impact model is as
follows.

In a normal environment the market impact cost is:

MINormal ¼ a1$Size
a2$sa3$
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1þ Size

�a4
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In a stressed environment where volatility doubles and liquidity is halved
the portfolio manager incorporates these expectations into the cost estima-
tion model as follows:

MIStressed ¼ a1$Size
a2$ð2$sÞa3$

�

Size

0:5þ Size

�a4

Therefore in a stressed environment the cost premium is equal to:

CostPremium ¼ 2a3$

�

1
0:5

�a4

¼ 2a3$2a4 ¼ 2a3þa4

This cost premium for the full I-Star model can also be approximated from
the simplified I-Star equation since the value of b1 is often small. In our
example, the increase in cost can be approximated with the above cost pre-
mium equation and our small cap market impact parameters as follows:

CostPremium ¼ 2a3þa4 ¼ 20:69þ0:55 ¼ 21:24 ¼ 2:36

Portfolio ManagementdScreening Techniques
Given the large potential variation in trading costs across stocks, managers
have begun using many different techniques to screen and filter those names
that could potentially be too expensive to buy and/or sell. One common
technique is to limit the position size based on a percentage of the stock’s
ADV, for example, set a maximum size of 10% ADV. The belief in this
case is that the market would always be able to absorb an order of this
size without the investor inflicting too much impact into the stock price.
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But the maximum %ADV value is often an arbitrary value and even at this
level there are names that are still potentially very expensive to transact.

To better show this point we analyzed the trading cost corresponding to a
10% ADV position size for large (SP500) and small (R2000) cap portfolios.
The trading cost for a 10% ADV order size in each of the stocks in the
SP500 index is shown in Fig. 18.6A. The average cost is 20 bp but these
costs vary greatly from a low of 3 bp to a high of 48 bp. For small cap stocks,
the average cost of a 10% ADV order is 37 bp with a range of 6e160 bp
(Fig. 18.7A). There are also a very large number of names with costs greater
than 60 bp.

Two questions arise when performing this type of portfolio manager
screening process. First, why should the portfolio managers limit the order
size to only 10% ADV for those stocks with very low trading costs? And
second, shouldn’t the maximum size be set lower for those very
expensive-to-trade stocks? The answer to both questions is yes. If a stock
has low trading costs and is a very appealing investment opportunity the
manager should not limit the holding size to some arbitrary value. And if
a stock is very expensive to trade, that stock should be held in a much lower
quantity in the portfoliodor possibly not held at all.
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To help determine the maximum %ADV size to hold in a portfolio, man-
agers can reverse engineer the filtering process. Rather than starting with
an arbitrary size constraint, managers can specify the cost level that they
feel is appropriate for the portfolio. For example, managers may deem
that a reasonable cost to trade large cap stocks is 20 bp. This cost level is
often tied to the expected alpha of the fund and will be further discussed
below. Then, managers compute for the investable universe the size that
can be traded resulting in the cost of 20 bp. The maximum size for the stock
is then determined for all stocks by solving the market impact equation by
setting the LHS equal to 20 bp and solving for size. Mathematically, this is
found by solving for size in the following:

20 ¼ b1$
�

a1 $ Size
a2 $ sa3

�

$POVa4 þ ð1� b1Þ$
�

a1 $ Size
a2 $ sa3

�

The one caveat here is that the manager needs to further specify the under-
lying execution strategy. For example, if the strategy is a VWAP strategy,
then the corresponding POV rate is:

POV ¼
�

Size

1þ Size
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Therefore we are not able to solve the above equation in terms of Size
directly. But we can determine the size via numerical methods straightfor-
ward but we still need to solve for each stock individually.

The size corresponding to a cost of 20 bp using a full-day VWAP strategy is
found from the following equation where we substitute POV with Size

1¼ Size:

20 ¼ b1$
�

a1 $ Size
a2 $ sa3

�

$

�

Size

1þ Size

�a4

þ ð1� b1Þ$
�

a1 $ Size
a2 $ sa3

�

Notice that in this formulation the portfolio manager can also incorporate
stress testing to determine the position size that will result in a cost of
20 bp under adverse market conditions by changing the volatility and
liquidity.

Fig. 18.6B shows the holding sizes for SP500 stocks resulting in a trading
cost of 20 bp (the average cost for an order of 10% ADV). The average po-
sition size is about 10% as expected and the range is from 4% ADV to 76%
ADV (the figure truncates the scale at 35%). Fig. 18.7B shows the position
sizes for R2000 stocks resulting in a trading cost of 37 bp (the average cost
for an order of 10% ADV). The average position size is again about 10% and
the range in order sizes is from 2% to 67% ADV.

This analysis shows that there are many stocks the manager can hold in the
portfolio at more than 10% ADV and not worry about incurring unneces-
sary transaction costs, even under stressed market conditions. And if these
stocks do have appealing alpha expectations the manager can greatly
enhance portfolio performance by determining appropriate order sizes to
maximize profits. Additionally, there are other stocks that should not be
held even at the 10% ADV level because the corresponding costs will be
too high and will erode too much of the uncovered alpha. These are the
stocks that need to be held in much lower quantities or possibly not held
in the portfolio at all. Unfortunately, the computational process above
does not have a direct analytical form but could be solved via optimization
or other nonlinear solution techniques.

Portfolio managers could improve fund performance by analyzing appro-
priate holding sizes based on both alpha expectations and trading costs.

BACKTESTING STRATEGIES
Money managers will often construct portfolios via optimization processes.
To help in the construction process these same managers will often run
numerous studies testing different ideas, how prices react to different sets
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of factors, and how these portfolios perform under various market condi-
tions. Interest lies not only in which companies will outperform or achieve
excess returns, but rather how stocks will perform compared to different
factors.

Quantitative managers spend much time and energy testing, retesting, and
verifying ideas and ensuring the uncovered relationship is statistically sound
before settling on the preferred portfolio. Often this requires the investment
ideas to be tested over a very long horizon such as 20e30 years or possibly
more if data are available.

All too often, unfortunately, portfolio managers find a strategy works well
in the backtesting analysis but once it is put into production the strategy
does not achieve the expected level of return or worse still loses money.
Why does this happen, you ask? Well, the primary reason is due to the
implementation cost of the strategy. Costs are often much higher than ex-
pected or planned. Of course, some of this is driven by the quant managers
themselves. Quantitative managers do a great job at uncovering opportu-
nities, but unfortunately all quants seem to find the same opportunities at
the same time. This increases the buying and selling pressure in the stocks
leading to a higher cost. For example, if the manager’s order is 5% ADV it
is more likely that the group of quantitative managers will exert buying
pressure in the stock close to possibly 50%e75% ADV or more. This leads
to higher trading costs than would be reflective of the 5% order and could
lead to reduced profits or losses. But it is also due to managers often using
an unrealistic transaction cost estimate such as 20 bp or possibly just the
size of the spread.

Another issue that could potentially arise is one where the manager deems
the trading cost is too expensive and offsets the incremental alpha. Thus the
manager would abandon this strategy because they believe it would be un-
profitable. However, many times managers are using historical costs that are
too high or do not properly reflect today’s trading environment. For
example, it is possible that if we traded the same list historically based
on today’s market structure (decimals, algorithms, etc.) the transaction
cost would be much lower than we expect, thus making the strategy profit-
able. If the manager does not include a realistic trading cost expectation in
their backtesting environment it may cause them to abandon a potentially
profitable investment idea.
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To combat these situations where managers incur a loss due to unexpected
high trading costs or abandon a strategy that seems unprofitable due again to
inaccurate transaction costs, managers are backtesting investment ideas us-
ing historical cost index series.

The important part of the cost index is to provide the historical trading cost
based on today’s market structure conditions not on the historical structure.
For example, in the early 1990’s the market was trading in 1/8s or really
1/4s according to the odd-eighths paper of Christie and Stoll (1994).
Let’s look at what has happened since then. The market changed from
the 1/8 quoting system to one of 1/16 (teenies), and the Securities and Ex-
change Commission order handling rules, decimalization, algorithms, the
Regulation National Market System, and growth of electronic trading
venues and the proliferations of dark pools all came into play, in addition
to having 10, 12, or more displayed venues compared to only two mutually
exclusive exchanges, the NYSE and Nasdaq.

These regulatory changes have dramatically improved the efficiency of our
financial markets and reduced trading costs. Therefore when we backtest us-
ing trading costs our goal is to construct a backtesting cost index series
based on the costs that would have occurred historically based on today’s
market structure and trading environment, not what occurred back then.
We use today’s market structure because we do not want to miss out on
an opportunity that would not have been profitable during yesterday’s mar-
ket structure, but given today’s market environment the strategy is highly
profitable.

To assist managers to resolve these issues and potentially uncover addi-
tional investment opportunities, we constructed a cost index based on to-
day’s market structure and the historical market conditions. This is shown
in Fig. 12.5 for US large cap stocks. Our cost index covers the periods
from 1991 to 2012 (22 years). The cost index shows costs gradually
decreasing over the 1990s but spiking in the late 1990s (Latam Crisis)
and the beginning of tech boom with increased volatility. Costs remained
at higher levels with large fluctuations until the tech bubble crash in March
2003. Costs then remained low through the quant crisis and dramatically
spiked during the financial crisis, flash crash, and again in the US debt
crisis. Quantitative portfolio managers could suffer large losses if they
use a constant trading cost such as 20 bp to enter and exit positions.
Many times, a strategy appears profitable due to lower modeled costs, but
these are the strategies that suffer the largest losses when implemented.
This cost index could also result in portfolio managers finding that a strat-
egy that would not have been profitable due to the spread size of 1/8th or
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1/4th in the 1990s may now incur a trading cost of only a few cents and
result in a profitable strategy.

MARKET IMPACT SIMULATION
In this section we present a market impact simulation experiment to high-
light the difficulty in developing stock-specific market impact models.
The approach also presents techniques that can be used by investors to
test and evaluate different types of financial models, not just market impact
models. The techniques are centered around simulating market conditions
and prices following a defined model and model parameters. The exercise
then sets out to estimate the model parameters based on the simulated
data. If the process can uncover the “true” parameter value, then the
modeling and estimation approaches are reasonable. Otherwise, even if
the model is perfect the difficulty in estimation model parameters may
deem the approach as unusable. Remember in this case that since we are
simulating data based on a specified model, the “true” parameters are those
parameters that were used to simulate the data.

How difficult is it to derive a stock-specific market impact model? In Chap-
ter 5 we discussed techniques to derive a general equation market impact
formula and a universal set of parameters across all stocks (a1, a2, a3, a4,
and b1). Since this model incorporates stock volatility and stock ADV into
the formulation it in a way provides different estimates across stocks. But
recall the last part of the chapter where we uncovered a relationship between
stock errors and company fundamental data. We found strong evidence that
market impact is negatively correlated with the log of market cap and log of
price, and positively correlated with beta, spreads, and stock-specific risk
(tracking error). This finding suggests that we might still be able to improve
our results at the stock level by including these data. But then why not sim-
ply calibrate a stock-specific model similar to how we have stock-specific
volatility and beta estimates? The short answer is that we simply do not
have enough data available. Price movement is often dominated by market
movement, market noise (volatility), and buying and selling pressure from
all other investors. This makes it very difficult to uncover stable statistical
relationships between price movement and customer order.

To illustrate the difficulty associated with estimating stock-specific param-
eters, let us examine the estimation process using simulated data.1 We know

1A variation of this exercise was previously given to my Cornell University financial en-
gineering graduate students as a final project, and it does a great job of highlighting the dif-
ficulty in constructing stock-specific parameters.
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that one of the biggest drawbacks with market impact estimation is the Hei-
senberg Uncertainty Principle of trading, that is, we can only observe the
price trajectory with the order or the price trajectory without the orderdnot
both. Therefore we are not able to accurately determine price movement
caused solely by the order. Well, this is certainly true. But let’s take a step
back for a moment. Suppose that we do know the exact relationship between
price movement and the buying and selling pressure of a trade. Then, we can
simulate trade data and test our market impact estimation approach on the
simulated data to determine if we have an accurate estimation technique.
The important point to keep in mind is that stock price is driven by many
factors such as stock-specific alpha, general market movement, impact
from the order, buying and selling pressure from other participants, and price
volatility. If we know the exact relationship between price impact and
buying and selling pressure we can simulate a market impact data series,
and then test our model against that simulated series to determine if our
modeling approach is able to uncover the true relationship.

Analysts are encouraged to duplicate these simulation tests with different
order sizes, volatility, liquidity, and market impact sensitivity to observe
the difficulty with calibrating a stock-specific model. When we repeat the
same experiment for a group of stocks, say 100 plus stocks, and then again
with say 500 stocks, a pattern will start to emerge.

Simulation Scenario
Stock RLK. Current price is P0 ¼ $50, annualized volatility is s ¼ 30%,
and the stock trades 1,000,000 shares per day. The customer order will
consist of order sizes from �25% to þ25% ADV. The average trade size
is 200 shares per trade and the distribution of trade size is shown below as
Shares(t).

Simulate both market trades for all other investors and trades for the
customer. Let the total volume traded from all other market participants
be equal to 1 million shares where the side of the order is randomly assigned
(50% chance of a buy and 50% change of a sell), and let the customer’s or-
der size and side be specified in advance. Then, the simulated data are as
follows. Let:

P0 ¼ 50

SideðtÞ ¼
�þ1 0:50

�1 0:50

CustomerSideðtÞ ¼ þ 1 or � 1
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The customer order side is specified in advance:

SharesðtÞ ¼

8

>

>

>

>

<

>

>

>

>

:

0:90 100

0:06 500

0:03 1000

0:01 5000

Avg Share Size ¼ 200

Number trades during the day ¼ 5; 000

ADV ¼ 1; 000; 000

MIðSharesðtÞÞ ¼ 0:0000025$SharesðtÞ
For a 20% order size on a stock that trades 1 million shares per day, this
market impact cost will be equivalent to 40 bp (and is consistent with
our findings in Chapter 5). For simplicity, we assume a linear impact rela-
tionship but analysts are encouraged with various formulations of the
impact model:

Beta ¼ 1

smarket ¼ 0:20

sstock ¼ 0:30

s
ε
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:302 � 0:202
p

Rm ¼ simulated market returns following random walk with 5000 trades in
the day with volatility scaled for 1 day and one trading period, e.g.:

smarket Per Trade Period ¼ 0:20$
1
ffiffiffiffiffiffiffiffi

250
p $

1
ffiffiffiffiffiffiffiffiffiffi

5000
p

The simulation process is as follows:

Step 1: Specify the customer order size and side. For example, in itera-
tion #1, specify a buy order for 200,000 shares of RLK. This represents
20% ADV and will consist of approximately 1000 customer trades since
stock RLK has an average trade size of 200 shares. Analysts performing
this simulation exercise will change the order size and side in each
iteration.
Step 2: Simulate 5000 trades from other market participants and the num-
ber of trades from the simulated order. Sequence the customer trades
throughout the day following any preferred methodology. For example,
sequence customer trades over the day following a VWAP strategy or an
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aggressive front-loaded strategy. Customer order trades should be alter-
nated with market participant trades in a random fashion but following
the specified strategy. We encourage analysts to experiment with various
sequencing schemes to simulate different trading algorithms. For the first
iteration there will be 6000 trades in total: 5000 from other market par-
ticipants and 1000 from the customer order.
Step 3: Simulate market prices for these orders:

Pt ¼ Pt�1 þ ðMIðSharesðtÞÞ $ SideðtÞÞ
� 0:95$ðMIðSharesðt� 1ÞÞ $ Sideðt� 1ÞÞ þ Beta$Rm þ xt

where xtwNð0; sεÞ and t ¼ 1e6000. Notice that in the formulation above
we add in the full market impact of the trade and subtract 95% of the impact
from the previous trade. This accounts for the dissipation of temporary
impactdwe assume an immediate dissipation of 95%. The 95% factor is
consistent with our findings in Chapter 5. Readers are encouraged to exper-
iment with various temporary percentages and market impact sensitivities.
Also notice that the side of the order for the customer will be either þ1
or �1 in the full iteration depending on whether the side was specified to
be a buy order or a sell order, respectively. The side of the order from all
other market participants will be randomized (50% chance the trade was
initiated from a buy order and 50% chance the trade was initiated from a
sell order). The side of the order in our example only affects the market
impact cost of the trade:

Step 4: Compute the average execution price of the customer’s trade us-
ing the simulated price data above.
Step 5: Compute the customer’s trade cost as the difference between the
average execution price and the starting price (adjusted for the side of the
order).
Step 6: Repeat this experiment 22 times (1 month of data) changing the
customer’s order size and side designations in each iteration.
Step 7: Plot the customer’s trading cost on each day as a function of order
size.
Step 8: Estimate the market impact sensitivity for 1 month of data and
observe how close the estimated value is to the true value.
Step 9: Repeat this experiment several times to mimic several months of
data. For each month, estimate the market impact sensitivity.
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Analysts are encouraged to perform these simulation exercises changing the
variables above such as the temporary impact dissipation rate, market
participant side parameter, total volume on the day, beta, volatility, etc.
This will further highlight the difficulty in uncovering the true relationship
between market impact and customer order size.

Fig. 18.8 illustrates the above simulation exercise for 1 month (22 trading
days) of data. The order sizes range from 0% to 25% ADV. But the relation-
ship we uncovered from the data indicates that cost and size are negatively
related, which would suggest that larger order sizes have lower costs. The
reason we have difficulty in uncovering a relationship between customer or-
der and impact is, as mentioned previously, actual price movement is often
dominated by stock alpha, market movement, buying and selling pressure
from other market participants, and volatility.

Readers who carry out this simulation exercise are sure to have a difficult
time estimating accurate market impact sensitivities using the customer or-
der. In addition, this exercise also shows how unstable these parameters
could be month to month (readers are encouraged to simulate several
months’ worth of data) and estimate parameters in each month. Notice
that we used a very simple market impact model above and very basic as-
sumptions and we still encountered difficulty. A more sophisticated model
would be even more difficult to acquire accurate results. But if we simulate
data for a universe of stock (e.g., for 500 stocks) over a month we will see a
pattern begin to emerge, even when using stocks with different volatilities
and different ADVs. Suspicious readers are encouraged to duplicate the
analysis outlined above. This should convenience our doubtful readers.

y = -668.09x + 76.141 
R² = 0.1339
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MULTI-ASSET CLASS INVESTING
Investing in Beta Exposure and Other Factors
Often, portfolio managers are interested in acquiring a specific market expo-
sure, and the actual holding in the portfolio is not as important if the portfolio
achieves the desired exposure level. For example, managers looking to ac-
quire exposure to the generalmarket indexdS&P500dhave several different
investment vehicles. They could invest in the underlying stocks, they could
purchase an exchange-traded fund (ETF), or they could construct a portfolio
comprised of futures contracts on the S&P500. In these cases, the manager’s
portfolio will have the same beta exposure as well as the same underlying
growth characteristics. Therefore from the perspective of investor utility, port-
folio managers should be indifferent as to which portfolio they hold.

The only difference in returns across these portfolios then should be due to
the implementation cost of acquiring the asset and any corresponding man-
agement fee. To achieve the highest returns possible, managers need to un-
derstand the cost structure of each asset, and choose the most cost-effective
path to gain the desired exposure.

Example #5
A portfolio manager looking to gain exposure to the general market index
can purchase stocks, ETFs, or futures. How should the manager determine
the best approach to acquire the exposure?

Based on what we have observed in practice, stock portfolios often have the
lowest cost for smaller sizes, followed by ETFs for slightly larger sizes, and
then futures for the largest sizes. This is illustrated in Fig. 12.7A. In this
example, stocks are the most inexpensive option for investment dollars
up to $250 million. ETFs are the most inexpensive investment vehicle for
investment dollars from $250 to $667 million. And futures are the most
inexpensive for investments from $667 million and higher.

Note: These values and breakpoints are for illustration purposes only. Investors
need to apply techniques provided in this chapter to determine exact break points.

What causes these differences across investment vehicles?

Equities
Equities often have the lowest implementation cost for smaller dollar values
but these costs increased at the fastest rates. Equity trading costs tend to in-
crease at the fastest rates because buying or selling pressure often causes
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market participants to believe that the excessive transaction pressure is due
to a mispricing of the stock price or due to changing company fundamentals
that have not yet been fully disseminated into the market. The correspond-
ing price change then often attracts momentum players and active managers
hoping to achieve a short-term trading profit, which further impacts the
stock price.

Exchange-Traded Funds
ETFs tend to have initial trading costs (intercept term) higher than the un-
derlying stocks. This is primarily due to the trading cost corresponding with
acquiring the position (like stocks) and also the management fee charged by
the ETF fund manager for maintaining the appropriate ETF portfolio. ETF
trading costs, however, increase at a slower rate with investment value than
the underlying stocks due to shadow liquidity. Shadow liquidity refers to
the potential trading volumes from market participants who stand ready
to buy or sell shares in an ETF if there is a mispricing in the market. As
soon as the ETF price is pushed too high or too low compared to the under-
lying securities these market participants jump in and perform a statistical
arbitrage-type function. If these participants can acquire the underlying
stocks at a lower price than the ETF they will buy the shares and sell the
ETF. If the ETF price is lower (due to selling pressure) than the price of
the underlying securities these participants will buy the ETF and sell the
stock. In theory, they will have a net zero risk position and will profit
from the difference in prices. Since the acquired position is hedgeddthey
have the exact same long and short exposuredthey can trade out of both
positions passively over time without incurring high trading costs and
lock in a profit. Additionally, ETFs can often increase or decrease the num-
ber of outstanding shares through creation and/or redemption. This differs
from company stock that has a constant number of shares. In these cases,
portfolio managers can purchase the underlying ETFs in the market if there
are sufficient sellers, and if not they could purchase the underlying equity
shares and create the ETF. Alternatively, portfolio managers could sell
the ETFs in the market if there are sufficient buyers, and if not managers
could redeem the shares and sell them in the market.

There is often a fee corresponding to the creation and redemption process
but in these cases the fee would still be less than the incremental market
impact cost for attracting necessary counterparties. The last point worth
mentioning here is that ETFs do not suffer the same information content
as stocks since ETF transactions are more likely believed to be due to a
macro event rather than any specific company event. If there is a large buyer
or seller of a stock it is more often believed to be due to company-specific
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information such as a mispricing, undervaluation, or simply changing com-
pany fundamentals that have not yet been fully disseminated into the
market.

How does this affect the ETF volumes in the market impact model? Since
ETFs have corresponding “shadow” liquidity, analysts will often use a higher
volume estimate than is reflected in the data. Some analysts may apply an
adjustment factor, e.g., 1.5, and some analysts may attempt to measure total
potential volume that could be used to create and redeem shares from the un-
derlying stock volume data and corresponding weights in the ETF.

How about ETF market impact price sensitivity? The price sensitivity
expression in the ETF market impact model “a1” is often higher than the
stock model price sensitivity parameter. This is because the ETF volatility
is lower due to diversification (e.g., market risk only), whereas stock vola-
tility is comprised of both market risk and company-specific risk. The
ETF price sensitivity “a1” parameter needs to be higher to avoid a potential
arbitrage opportunity. For example, suppose volumes are identical across
stocks and ETF (we are ignoring shadow liquidity here for simplicity). If
the manager invests the same dollar amount in the ETF or in the underlying
stock portfolio (following the same weightings) the trading costs should be
the same. But since the ETF volatility will be less than the weighted stock
portfolio the market impact model will estimate lower costs for the ETF
than the portfolio of stocks. To correct for the mispricing, a proper ETF mar-
ket impact model will need to have a higher sensitivity term as follows:

a1ETF ¼ a1Stock$

�

w0s
sp

�a3

where w0s is the weighted volatility of the ETF portfolio and sp is the ETF
portfolio volatility incorporating all covariance and correlation benefits.

Futures
The initial cost of trading futures is usually the highest compared to ETFs
and equities. The reason is primarily due to the roll cost associated with pur-
chasing the next futures contract at the time of the contract expiration. Man-
agers who maintain a portfolio of futures contracts will need to
continuously purchase the next contract. This creates a recurring cost. An
advantage of trading futures is that the contract sizes are usually extremely
large and trading costs increase at the slowest rate compared to ETFs and
equities. Investors will transact in futures for various reasons. First, inves-
tors purchase futures to hedge positions. Second, managers purchase futures
often for speculation. Third, investors have begun investing in futures
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portfolios due to the cost advantage they provide for the very large orders.
These provide a great deal of liquidity for the futures contracts and result in
lower incremental trading costs.

Beta Investment Allocation
A common misconception with beta investment allocation strategies is that
the portfolio manager should purchase only a single investment vehicle to
achieve their exposure. For example, in Fig. 18.9A we found that equities
are the most cost-efficient vehicle if dollar value is less than $250 million.
ETFs are the most cost-effective vehicle if dollar value is between $250
and $667 million, and futures are the most cost-effective vehicle if dollar
value is greater than $667 million. But this is true only if the portfolio man-
ager can invest in a single asset. Managers, however, can incur lower trading
costs if they allocate investment dollars across all three alternative options
(Fig. 18.9B). For example, equities are the lowest trading cost up to $167
million. For investment values between $167 and $500 million, managers
would be $167 million in equities and the remainder in ETFs up to $500
million. And after $500 million the allocation should be $167 million in eq-
uities, $333 million in ETFs, and the remainder in futures. Now the manager
could achieve the same exposure but a lower trading cost.

Fig. 18.9C shows the minimum cost allocation scheme compared to the all-
or-none examples in Fig. 18.9A. Notice that for values up to $167 million the
costs are the same but at dollar values higher the manager is best served via
an allocation schedule as shown in Fig. 18.9B (Table 18.3).

MULTI-ASSET TRADING COSTS
In this section we examine multi-asset trading costs.2 We utilize the I-Star
impact model developed in earlier chapters to investigate differences in
cost structures across the asset classes as well as to estimate the underlying
transaction costs for various order sizes. Our analysis across asset classes
found that the I-Star model performed well across both global equity markets
and different asset classes, hence making it an important decision-making
tool for portfolio managers to evaluate asset allocation, portfolio construc-
tion, and best execution trading strategies.

2Scott Wilson, Ph.D., provided much of the early direction and insight in applying the I-
Star impact model to estimate trading costs across various asset classes. He performed
this leading research while an intern at a large pension plan and while completing his
Ph.D. in Economics. He is currently working for Cornerstone Research.
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The market impact model parameters used in our analysis were calibrated
using data over the period 1H2011. See Kissell Research Group (www.
KissellResearch.com) for updated impact parameters.3

Global Equity Markets
The first part of this analysis consisted of evaluating trading costs across the
global equity markets. This included: US large cap stocks, US small cap
stocks, Canada, Europe, Australia, Hong Kong, Japan, and China, as well
as for Developed Europe, Developed Asia, Latin America, and the Frontier
Markets.

The model parameters were calibrated following the techniques provided in
Chapter 5 and using data from 1H2011. We then estimated trading cost for
an order size of 10% ADV executed via a full-day VWAP strategy. We
used a constant volatility of 25% for all groups to allow for fair comparison
across all markets. As expected, US large cap and Canada stock trading
costs were relatively stable over the analysis period except for a spike in
AugusteSeptember 2011 due to the US debt crisis. Canada trading costs
were stable throughout the period and were not as affected by the economic
issues encountered in the United States. Japan and Hong Kong were the
markets with the next lowest trading costs. Both countries had months in
2011 where impact cost spiked due to changing price sensitivity caused
by economic and political events in the region. Developed Europe experi-
enced the greatest fluctuation in trading costs throughout 2011 with periods
of spiking cost that appeared to be related to the ongoing macroeconomic
climate and uncertainty in Europe. Australia and China had trading costs
that were consistent with US small cap stocks and relatively stable over
the period. The emerging markets and Latin America countries experienced
much higher trading costs over the analysis period 2011. This was primarily

Table 18.3 Allocation Schedule.

Investment Value Allocation

Dollars < $167 Million All Dollars in Equities

$167 Million � Dollar Value � $500 Million $167 Million in Stock (Dollar Value $167 in ETF)

Dollars > $500 Million $167 Million in Stock, $333 Million in ETF (Dollar $500) in Futures

3Kissell Research Group maintains updated market impact parameters and trading cost es-
timates for various asset classes, see www.KissellReserachGroup.com for the most recent
data sets.
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due to a much higher information content of the order (at least a much
higher perceived information content) and a resulting higher permanent
market impact cost. Costs in these markets were more than 2.5 times greater
than for US large cap stocks. The Frontier markets had by far the highest
trading costs in 2011. These costs were more than 4.0 times higher than
for US large cap stocks. The higher costs in the Frontier markets appeared
to be driven by hypersensitivity to order flow and trade imbalance, resulting
in a high information content of the trade and higher permanent impact cost.
This was consistent with the findings in the other emerging markets and
Latin America.

The parameters of the model for our analysis and trading cost estimates for
2011 are provided in Table 18.4A. Investors interested in current trading
costs by global region and country are referred to www.KissellResearch.
com (see IeStar Global Cost Index Quarterly Report and Country Trading
Cost Analysis).

Multi-Asset Classes
The second part of this analysis consisted of evaluating trading costs across
multi-asset classes. Our asset classes consisted of US large cap stocks, US
small cap stocks, liquid and illiquid ETFs, futures, government and corpo-
rate bonds, commodities, and exchange rates (foreign exchange [FX]). In
this analysis, we computed the trading cost for a trade value of US$10
million executed via a strategy of POV ¼ 10%. This was used in place of
a constant order size (%ADV), which is more commonly used in the equity
markets because transaction values can vary dramatically across asset clas-
ses. In our multi-asset trading cost analysis, we also placed boundaries on
some of the model parameters to make a fair comparison of costs across
different asset classes. Portfolio managers and analysts can achieve improve-
ments in the models forecasting accuracy by allowing more freedom on the
values of the parameters and eliminating the constraints using the parameter
estimation phase. Our first goal, however, was to uncover an appropriate
market impact model, determine the cost structure surrounding trading costs
in the different asset classes, and evaluate and compare to the global equity
markets. Further research is suggested to determine appropriate bounds on
the underlying model parameters.
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Table 18.4A Equity Market Trading Cost Analysis (2011): Quantity Expressed in Terms of Order Size (%ADV).

Developed Emerging Emerging

Parameter US-LC US-SC Canada Europe Australia
Hong
Kong Japan China Europe Asia Latam Frontier

a1 1507.5 1831.7 1525.6 1772.7 1809.9 1333.4 1543.7 1351.2 1945.9 2431.9 2356.0 2756.0

a2 0.38 0.45 0.41 0.60 0.65 0.50 0.49 0.41 0.56 0.52 0.52 0.42

a3 0.94 0.91 0.95 0.81 0.60 0.81 0.85 0.91 0.74 0.92 1.05 1.05

a4 1.05 1.04 0.94 1.05 0.94 0.95 0.93 0.96 1.00 1.00 0.80 0.80

b1 0.97 0.93 0.97 0.90 0.95 0.94 0.95 0.90 0.83 0.84 0.81 0.82

Size (%ADV) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

Volatility 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25%

POV rate 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 9%

I-Star (bp) 169.6 183.1 159.0 144.1 177.5 137.4 152.3 148.9 192.1 205.1 166.0 244.4

MI (bp) 18.4 27.0 21.0 24.8 26.6 21.5 23.0 28.3 46.8 48.5 51.3 73.4
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Why do Trading Costs Vary Across Asset Classes?
Our analysis found that trading costs vary across asset classes for several
reasons. These include: (1) investment objective, (2) trading liquidity, and
(3) competition.

Definitions
There are many different reasons why investors will select to transact
different instruments. For example, the most common investment objectives
include (1) buy and hold investing, (2) risk hedging, and (3) speculation.

Trading liquidity includes (1) trade volume, (2) shadow liquidity, (3) mis-
pricing liquidity, and (4) factor exposure liquidity. Each is described as fol-
lows. Trade volume across the asset classes is a very general term used to
denote actual transaction volume, transaction value (in dollars), as well as
number of contracts, etc. Shadow liquidity refers to the underlying stock
liquidity for a financial product where the underlying pricing scheme is a
financial instrument that trades on its own in the market. The term is
most commonly used to refer to the underlying stock volume for an ETF
instrument. For example, investors wishing to buy an ETF can either pur-
chase the ETF in the market or purchase the underlying stocks that comprise
the ETF in the market and then create the ETF. Hence, investors wishing to
purchase an ETF have two available sources of liquidity that can be used to
complete the transaction. Mispricing liquidity refers to the volume that is on
standby in the market and ready to transact if there is a mispricing between
two instruments or an arbitrage opportunity. The most common occurrence
of mispricing liquidity is associated with statistical arbitrage traders who are
standing by ready to transact in an index and its underlying stock members,
or in an ETF and its underlying stock members if there is a market mispric-
ing. These traders will sell (short) shares in the overvalued instrument and
buy shares in the undervalued instrument. Factor exposure liquidity refers to
the investor’s ability to invest in a similar financial instrument, which pro-
vides the risk characteristics and an expected returns stream as the desired
instrument. For example, investors interested in gaining exposure to the
SP500 index have numerous options available. They can purchase the
stocks that comprise the SP500 index, any of the large cap SP500 index
ETFs, an SP500 futures contract, a mini futures contract, etc. These instru-
ments will provide the investor with exact same returns and risk. They all
have the same risk composition and same stream of future returns.
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Competition refers to the investor’s ability to transact the financial instrument
from various venues, broker-dealers, and/or market participants. Competition
has been found to dramatically reduce trading costs in the equity markets. A
marketplacewithmultiple venues ismore competitive and cost efficient than a
market with a single or relatively few dealers for the financial instrument.

Observations
The following results are based on empirical data and market observations
over the period 1H2011 and trade costs estimates are based on a transaction
size of US$10 million.

Equities
A trade value of US$10 million is equivalent to an order size of 4% ADV
for a US large cap stock and an order size of 80% ADV for a US small cap
stock. The reason the small cap order size is so much larger than the large
cap order size is that the price of the small cap stock is about one-half the
price of large cap stocks and small cap volume is about one-tenth the price
of large cap stocks. This results in small cap order sizes dramatically larger
than large cap stocks for the same dollar value. The corresponding cost es-
timate of US$10 million was 14.1 bp for the large cap stock and 65.1 bp for
the small cap stock. This results in a small cap stock cost that is 4.6 times
greater than for the equivalent dollar value invested in the large cap stock.

Exchange Traded Funds
Cost estimates for the liquid ETF were approximately �80% less than costs
for large cap stocks. This reduction in cost was primarily due to the shadow
liquidity and factor exposure liquidity corresponding to ETFs. For example,
using a single stock market impact model, the estimated cost for transacting
100% ADV of a broad market ETF such as the SPY could be as high as
200 bp. But the actual trading cost for this investment is closer to
10e20 bp since the investor has many options to achieve this market expo-
sure and the desired ETF. Investors could (1) purchase the desired ETF, (2)
purchase the underlying stocks and create the ETF, and (3) purchase a fu-
tures contract, exchange the futures for the physical stock, and then create
the ETF. Costs corresponding to the illiquid ETFs were found to be �25%
to �35% less than large cap stocks.

Futures
Future trading costs (stock index futures) were found to be �80% less than
large cap stocks. Future contracts were also found to be less sensitive to
larger order sizes than for stocks or for ETFs. Investors could improve
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the model forecasting accuracy by fine tuning the impact model for each in-
dex individually. Portfolio managers wishing to invest in a futures portfolio,
however, will incur an incremental cost at the time of futures expiration
where they will have to settle the contract, then purchase another futures
contract. This is known as the “roll cost” and it plays a large part in the total
trading cost of futures contracts.

Bonds
The corresponding cost of government bonds was �90% lower than the
cost of large cap stocks. Most of the cost was due to the spread cost of
the bond. Unlike equities, where investors can purchase shares at the bid
and sell shares at the ask (offer), investors are much more likely to pay
the full spread cost when transacting government bonds. The corresponding
cost of corporate bonds was dramatically higher than large cap stocks. Our
analysis found that the cost of transacting corporate bonds was þ526%
higher than the cost of transacting large cap stocks. That is, corporate bonds
were 6.26 times more expensive to transact than large cap stocks! This ap-
pears to be due to much smaller availability of corporate bonds than for eq-
uities and also the bideask spread. Investors seeking to purchase corporate
bonds will often have to find a dealer with an existing inventory and then
additionally pay the ask price. Investors seeking to sell corporate bonds
will need to find a dealer willing to take on inventory and then sell the
bonds at the bid price. The corresponding risk premium of a corporate
bond can be dramatically reduced by these transaction costs if the investor
does not hold the bond for its remaining duration. We do expect corporate
bond transaction costs to decrease with increased market transparency. We
did not find a large relationship between corporate bonds and order size as
has been found with equities. Transaction costs in the corporate bond mar-
ket appear to be related to the competitiveness of the market and number of
corresponding dealers.

Commodities
Commodity transaction costs were on average about �50% lower than large
cap stocks. Much of this cost was due to the bideask spread rather than the
transaction size. We also found that trading costs across different commod-
ities varied greatly. For example, precious metals had costs that were much
different than fossil fuels such as oil and natural gas, and were much
different than agricultural goods such as corn, sugar, wheat, etc. Commod-
ity prices did not appear to be strongly related with actual transaction size as
it is for equities. Thus there is a structural difference between equities and
commodities.
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Currency
Currency trading (e.g., exchange rates, FX) was �63% less than large cap
stocks. The largest component of the FX trading cost was the market spread.
We did not find as large a relationship between trading cost and transaction
value for currencies as we observed for stocks. But investors did transact at
the full spread rather than transacting within the spread as is often accom-
plished in the equities markets. The market structure for FX trading is vastly
different than the equities markets. These results are shown in Table 18.4B.

A major finding between the cost structure with equities and other asset
classes is that price sensitivity to the underlying order size (e.g., price elas-
ticity) is much more instrument specific than it is for stocks. We found the
parameters a1, a2, a3, a4, and b1 were relatively stable across stocks in our
equity market grouping (e.g., US large cap, US small cap, Europe, etc.),
but these parameters did vary by instruments in other asset classes. For
example, the model parameters could be much different for a liquid broad
market ETF compared to a specific factor ETF such as a dividend-
yielding ETF or a bond index ETF. Model parameters could also vary greatly
across the many different commodities such as oil, natural gas, gold, silver,
corn, wheat, etc.

Room for Improvement
As mentioned above, in our multi-asset trading cost analysis we bounded
the market impact parameters (e.g., set constraints on the potential set of so-
lutions) to be able to make a fair cost comparison of trading costs across the
different asset classes. But as our results above found, we can improve the
forecasting accuracy of the model by allowing these parameters to vary by
asset class. Many of the asset classes have relationships different from the
equity markets. For example, currencies, commodities, and corporate bonds
were found to have a much lower relationship with cost and size as was
found for equities. Portfolio managers investing in multi-asset classes are
best served by using a market impact model that is constructed specifically
for that financial instrument, and allowing the parameters of the model to
vary appropriately.

The cost structure of financial asset change over time. Investors seeking the
most up-to-date cost estimates and impact model parameters are referred to
www.KissellResearch.com and the Kissell (2013) “Multi-Asset Trading
Cost Estimates” working paper available upon request.
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Table 18.4B Multi-Asset Trading Cost Analysis (2011): Quantity Expressed in Terms of Constant USD Value.

Parameter US-LC US-SC Liquid ETF
Illiquid
ETF Futures

Government
Bond

Corporate
Bond Commodity Currency

a1 0.97 1.13 0.24 0.41 0.22 0.19 2.76 0.54 0.15

a2 0.38 0.45 0.38 0.40 0.38 0.37 0.38 0.38 0.41

a3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

b1 0.97 0.93 0.99 0.94 0.99 1.00 0.80 0.99 0.90

Dollars $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000

Volatility 25% 25% 25% 25% 25% 25% 25% 25% 25%

POV rate 10% 10% 10% 10% 10% 10% 10% 10% 10%

I-Star (bp) 110.9 399.6 27.7 65.2 24.7 18.9 314.9 62.1 27.7

MI (bp) 14.1 65.1 3.0 10.0 2.7 1.9 88.2 6.8 5.3
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MARKET IMPACT FACTOR SCORES
In the section above, we showed how portfolio managers could determine
the appropriate order size that could be transacted at specified cost. But
this often requires complicated numerical procedures to find the solution
and must be solved for each stock individually. This analysis can be
done, but it is often quite time consuming.

The market impact factor score is an alternative method to efficient screen
stocks based on trading costs. The market impact factor score incorporates
the I-Star market impact model, corresponding parameters, and stock-
specific trading characteristics (liquidity, volatility, and market price) to
determine a trading cost score. The higher the score, the more expensive
the stock is to trade and the lower the score, the less expensive the stock
is to trade.

Managers use the market impact factor score to improve their stock-
screening process by filtering the more expensive and difficult names to
trade. The advantage to our market impact factor score is that it does not
require complicated or sophisticated numerical procedures, and it is a
more accurate representation of the trading cost environment. The deriva-
tion of the market impact factor score for shares is as follows:

Step 1. Start with the I-Star model:

I�ðSharesÞ ¼ a1$

�

Shares

ADV

�a2

$sa3

Step 2. Rearrange the terms in the expression by factoring out shares:

I�ðSharesÞ ¼
(

a1 $

�

1
ADV

�a2

$ sa3

)

$Sharesa2

Step 3. The market impact factor score is then:

KðSharesÞ ¼ a1$

�

1
ADV

�a2

$sa3

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MI Factor Score ðSharesÞ

The market impact factor score provides managers with the stock’s market
impact sensitivity K(Shares). For the same number of shares to trade and the
same strategy, the market impact factor score will provide a ranking value of
each stock’s trading cost. This score allows a fair and consistent comparison
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of cost of trading across stocks and includes both liquidity and volatility
terms. If the MI factor score is twice as high for one stock compared to
another stock, the cost to trade the first stock will be twice as high as the sec-
ond stock.

Portfolio managers finally have a trading cost factor score that will alleviate
the need to utilize broker-dealer pretrade models, and performing time-
consuming numerical procedures. The factor score can be easily computed
on the manager’s desktop or integrated into a proprietary in-house model.
The only requirement to compute the score is to have the market impact pa-
rameters and stock-trading characteristics (see Kissell, 2013).

In many situations, portfolio managers do not set out to invest in a specified
number of shares or in a specified order size (%ADV). They more often set
out to invest a specified dollar value into a stock or basket of stocks. To
accommodate these needs we can reformulate the MI factor score in terms
of dollars.

The number of shares that can be purchased for a fixed dollar amount is:

Shares ¼ Dollars$
Price

Then we can compute the market impact factor score in terms of dollars as
follows:

Step 1a. Start with the I-Star model:

I�ðSharesÞ ¼ a1$

�

Shares

ADV

�a2

$sa3

Step 1b. Convert shares to dollars:

I�ðDollars$Þ ¼ a1$

�

Dollars$
Price

$
1

ADV

�a2

$sa3

Step 2. Rearrange the terms in the expressions and factor out dollars:

I�ðDollars$Þ ¼
(

a1 $

�

1
Price

$
1

ADV

�a2

$ sa3

)

$Dollars$2

Step 3. The market impact factor score is then:

KðDollars$Þ ¼ a1$

�

1
Price

$
1

ADV

�a2

$sa3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MI Factor Score ðDollars$Þ
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Current State of Market Impact Factor Scores
Portfolio managers are using the market impact factor scores as an addi-
tional layer of quantitative screens, and as part of asset allocation and stock
selection. Since the factor score incorporates both liquidity and volatility,
and provides a consistent comparison across all stocks, it is quickly
becoming the preferred TCA screening tool for funds. Results incorporating
market impact factor scores have been found to adhere to best execution
practices by better ensuring consistency between trading goals and invest-
ing needs.

Kissell Research Group provides market impact factor scores to portfolio
managers for global equities and various financial instruments across the
multi-asset classes.4

MARKET IMPACT FACTOR SCORE ANALYSIS
We compared the market impact factor scores expressed in terms of dollars
for large and small cap stocks. Scores are sorted from smallest (cheapest to
trade) to largest (most expensive to trade). Large cap stocks had an average
market impact factor score of K ¼ 0.001 (Fig. 18.10A). Visual inspection of
the scores finds approximately three distinct categories. The first grouping
consists of the 100 least expensive stocks to trade, the middle grouping con-
sists of the 300 stocks with an average trading cost, and the last grouping
consists of the 100 most expensive stocks to trade.

The first grouping of stocks represents the cheapest trading cost stocks.
Managers could transact these names with the least amount of worry of
adversely affecting prices. Managers could also select to hold larger quan-
tities of these stocks without incurring abnormally high costs. The third
grouping of stocks represents the expensive trading cost stocks. These are
the names that will result in the highest market impact cost of the group.
Managers should analyze these names to fully understand their trading char-
acteristics and they may be best served by holding few shares of these
stocks in the portfolio unless of course the incremental alpha will more
than offset the increment trading cost.

Stocks in the R2000 index also have a very similar market impact factor
score (dollar) shape. This is shown in Fig. 18.10B. The average market
impact factor score for R2000 stocks is K ¼ 0.42. Notice that this is much
larger than the average score for SP500 (K ¼ 0.001). This difference is pri-
marily due to SP500 stocks having higher prices and much higher liquidity.

4Kissell Research Group, www.KissellReserach.com.
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The market is also more sensitive to trading small cap stocks in general. Our
market impact analysis found higher values for small cap stocks compared to
large cap stocks. Visual inspection finds that there are approximately 400
stocks that are relatively inexpensive to trade (in relation to other small
cap stocks) and approximately 400 stocks that are relatively very expensive
to trade (in relation to other small cap stocks). Managers could take advan-
tage of these market impact scores by increasing holdings in the stocks with
low factor scores without the worry of adversely inflicting abnormal levels of
market impact cost above acceptable levels. The 400 very expensive-to-trade
stocks could result in dramatically higher levels of market impact cost much
above and beyond what is expected, especially in times of a stressed market
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environment. These are the trades that often turn a great investment oppor-
tunity into one that is just moderately profitable and possibly incurs a loss.

Notice in Fig. 18.10B how quickly the market impact factor score increases
for the tail end of the small cap universe. The last 100 stocks are extremely
costly and very sensitive to investment dollars. Managers should think about
excluding these stocks from their portfolio or at least holding smaller invest-
ment dollars in these names, unless of course the expected stock alpha will
more than offset these incremental transaction costs.

Please note that these break points are found by visual inspection and ana-
lysts need to determine actual break points based on their investment needs
and alpha expectations. In the end, these market impact factor scores pro-
vide vast improvement over other screening techniques that only use
liquidity or volatility.

ALPHA CAPTURE PROGRAM
An alpha capture analysis provides the portfolio manager with the quantity
of forecasted alpha that can be achieved via an appropriately structured
trading strategy. Forecasted alpha in this manner has alternatively been
referred to as price return, price appreciation, price trend, price evolution,
and drift (Kissell, 2003).

The quantity of the alpha that can be captured is dependent upon the size of
the order, the alpha forecast, the cost of the trade, and the underlying strat-
egy. For example, if a strategy is expected to provide a return of 10% over a
period the alpha capture analysis will provide information about how much
of the expected return the manager will be able to achieve for various order
sizes. An order of 5% ADV may be able to capture 9.8%, an order of 10%
ADV may be able to capture 9.5%, an order of 25% ADV may only be able
to capture 9.0% of the return, etc. The larger the order size, the lower the
expected alpha the manager will realize due to trading costs. In other words,
the alpha capture strategy will estimate the profitable of a strategy.

Alpha capture programs provide managers with answers to many of their
investment-related questions: How much alpha will my investment achieve?
How much should I invest? And most importantly, how is TCA being uti-
lized to analyze profitability concerns?

To accurately compute expected alpha capture, managers need to specify
their alpha estimates and have accurate market impact modeling capabil-
ities. And this is yet another reason why TCA has historically gained so lit-
tle traction in the industry. Portfolio managers are unwilling to provide
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brokers with their alpha estimates, and brokers have been unwilling to pro-
vide managers with the underlying market impact models.

Market impact and alpha cost are conflicting terms. Trading too fast will
incur too much impact but trading too slowly will miss too much alpha
(or missed profit opportunity). Subsequently, we refer to this conflicting
expression as the portfolio manager’s dilemma.

In Chapter 5 we provided techniques to develop and test a market impact
model. In this chapter we provided a pretrade of pretrade model to decipher
broker models, to calibrate preferred market impact parameters, and to
allow those models to function as a standalone application on the investor’s
own desktop and as part of their own in-house proprietary systems.

The pretrade of pretrade approach is the easiest way for analysts and man-
agers to solve the issue of not having a market impact model on their
desktop. The process provides managers with a functional form of a model
and allows them to run that model from their own desktop. They can then
incorporate their own liquidity and volatility views, and perform sensitivity
analysis with different alpha estimates and various market conditions. This
last piece is the most important since it allows managers to keep their alpha
expectations proprietary. Imagine if fund managers did provide their bro-
kers with their alpha views!

Example #6
Portfolio managers develop alpha capture programs by incorporating the
simplified I-Star impact model and the manager’s alpha forecast. For a
continuous trading strategy and an alpha estimate following a linear trend,
the manager will incur an alpha cost equal to one-half the total alpha move-
ment over the trading period t. This mathematical representation is:

Alpha Costbp ¼ 1
2
$
mbp

d
$t

where mbp is the alpha forecast, d is the time horizon of the alpha forecast,
and t is the time to complete the order with the condition 0 � t � 2. For
example, if the alpha forecast is that the stock will increase 5% over the
next 3 days we have mbp ¼ 500bp and d ¼ 3.

We can further express our trading time t in terms of our trading strategy a

as follows:

t ¼ Shares

ADV
$
1
a
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Then, our alpha cost is:

Alpha Costbp ¼ 1
2
$
mbp

d
$
Shares

ADV
$
1
a

Our simplified I-Star market impact model is:

MIbp ¼ a1$

�

Shares

ADV

�a2

$sa3$a

In a properly structured alpha capture program the manager will seek to
maximize the expected profit from this opportunity. This is determined as:

Max p ¼ mbp �
 

mbp

2d
$
Shares

ADV
$
1
a
þ a1 $

�

Shares

ADV

�a2

$ sa3 $a

!

The solution to the problem is:

a� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mbp

2d
$
Shares

ADV
$

 

a1$

�

Shares

ADV

�a2

$sa3

!�1
v

u

u

t

The maximum alpha capture opportunity is:

p� ¼ mbp �
 

mbp

2d
$
Shares

ADV
$
1
a� þ a1 $

�

Shares

ADV

�a2

$ sa3 $a�
!

Example #7
A small cap stock is expected to increase 3% in the next 3 days. The next
most attractive investment will increase 2% in the next 3 days. The manager
wants to answer three questions:

1. How much alpha can a manager capture if the order size is 10% ADV?
2. How much can be invested in this stock before we begin to incur a loss?
3. How much should the manager invest in the stock?

1. How much alpha can a manager capture if the order size is 10% ADV?

The solution to how much alpha a manager can capture if the order size is
10% ADV is found by maximizing our expected profit (Eq. 11.23). In this
example, the alpha forecast is 3% over 3 days. For simplicity, we illustrate
this concept using a linear appreciation model. In practice, managers can
incorporate any trend preference they have such as a compounded model,
nonlinear, exponential, or even a step function where the return only occurs
overnight and is constant during the day.
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The alpha capture optimization is illustrated in Fig. 18.9 for a small cap
stock with annualized volatility ¼ 43%. If we execute an order of 10%
ADV ultra-aggressively the market impact cost will be 132 bp (the instanta-
neous impact cost) but we will not incur any alpha cost. Since the stock will
return 3% or 300 bp over the period this urgent execution strategy will earn
us a net return of 168 bp. If we trade passively over the entire 3-day period
our impact cost will be 23 bp but our alpha cost will be 150 bp. The total cost
will be 173 bp and our net profit will be 127 bp, which is less than trading the
entire position at once. A naïve analyst may elect to trade the entire order at
once to earn a higher expected return. But this would not be an appropriate
option. Look at the graph in Fig. 18.9. Notice how the market impact cost is
decreasing over the period and alpha cost is increasing over the period as ex-
pected. But most importantly, look at the total cost curve. This cost starts
high when market impact is dominating the total cost, decreases, and then
begins to increase again when the alpha cost starts to dominate the total
cost. The total cost function will always be a convex function unless the
manager is buying stocks that are decreasing in value or selling stocks
that are increasing in value.

The minimum cost occurs at a trading time of 0.45 days (just slightly less
than half a day in volume time). The corresponding market impact cost is
54 bp and corresponding alpha cost is 23 bp for a total cost of 77 bp.
The net profit the manager can earn is 223 bp (300 e 77 ¼ 223 bp). Notice
that this is much larger than a profit of 168 bp for the ultra-aggressive instan-
taneous strategy and 127 bp for the passive strategy. The maximum alpha
capture for this order is 223 bp.

2. How much can be invested in this stock before we begin to incur a loss?

This is found by maximizing the number of shares that can be transacted at
a cost equal to the projected alpha of 3% or 300 bp. This is determined by
solving the following optimization:

Max Shares

s:t: a1 $

�

Shares

ADV

�a2

$sa3$a ¼ 300bp 18.1

In this example, the manager could purchase up to 91% of the stock’s ADV
over 1.5 days at a cost of 300 bp.

3. How much should the manager invest in the stock?
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This is determined by performing economic opportunity cost analysis. The
portfolio manager will invest dollars in the stock until the net profit is equal
to the expected return of the next most attractive vehicle (economic oppor-
tunity cost). In this example, the manager can purchase an order equal to
15% ADV resulting in a net profit of 201 bp. Purchasing any more than
15% ADV will cause the manager’s profit to fall below 200 bp, and then
the manager would be better off by investing the investing amount in the
next most attractive opportunity and earning a profit of 200 bp. This is
shown in Fig. 18.9.

In practice, many portfolio managers may elect to investigate a profit maxi-
mizing strategy that consists of the appropriate allocation of dollars across
both stocks simultaneously.

Alpha Capture Curves
The alpha capture curve is the portfolio manager’s answer to the trader cost
curve. Alpha capture curves provide the maximum quantity of total alpha
that can be achieved (captured) for a given order size. An example of an
alpha capture curve is shown in Table 18.5 using stock data from
Fig. 18.11. The left-hand column shows the order size as a percentage of
ADV. The columns show the maximum alpha that can be achieved for

Table 18.5 Alpha Capture Curves.

Portfolio Manager Profit Curves

Maximum Trading Profit

Alpha Over 3 Days

%ADV 1% 2% 3% 4%

1% 87 184 282 380

5% 65 156 250 346

10% 45 132 223 317

15% 29 112 201 293

20% 15 95 182 272

25% 2 79 164 253

30% �10 64 148 236

35% �22 51 133 219

40% �32 38 118 204

45% �43 25 105 190

50% �52 14 92 176
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different alpha forecasts and time horizons. Like the trading cost curves, the
alpha capture curves are specific for the stock and alpha forecast. Alpha cap-
ture curves provide managers with invaluable reference data to determine the
size or dollar value that can be invested into stock.

Alpha capture curves provide managers with the following (Table 18.5):

1. Expected alpha capture (profit level) for a specified order size and alpha
forecast. For example, if the manager wants to transact an order for 30%
ADV in a stock where the forecasted alpha is 3% over 3 days, the
maximum profit (excluding trading costs) the manager can expect to
achieve is 148 bp.

2. It provides the manager with the maximum order size that can be traded
for a profit. For example, if the alpha forecast is 1% over 3 days, the man-
ager can trade up to 25% ADV. At 25% ADV the manager will net a
profit of 2 bp. Trading more shares will cause the manager to incur a
loss on the trade (e.g., the trading cost was higher than the alpha forecast).
If the manager sets out to trade 30% ADV in this stock they would expect
to incur a cost of �10 bp.

3. It provides the manager with means to determine the appropriate order
size while evaluating the economic opportunity cost of the trade. For
example, following the scenario in Example #6, a manager whose most
attractive investment opportunity is a stock with an alpha forecast expec-
tation of 3% over 3 days and second most attractive opportunity is a stock
with an alpha forecast of 2% over 3 days could trade up to 15% ADV in
the first stock before having to allocate dollars to the second stock. This is
shown in Table 18.5. Notice that for an order of 15%ADV, the maximum
trading profit for the investment vehicle at 3% over 3 days is 201 bp.

0

50

100

150

200
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

C
os

t (
ba

si
s 

po
in

ts
)

time (days)

R2000 - Minimizing Total Cost

(Size = 10% Adv)

Market Impact Alpha Cost Total Cost

n FIGURE 18.11 Alpha Capture Process.

Alpha Capture Program 517



Investing any more than 15% ADV will cause the net profit level to be
less than 200 bp (2%). Hence, the manager would be better off investing
the incremental dollars in the next most attractive investment.

Important Note
Alpha capture curves provide managers with a quick reference for profit-
ability. In our examples above, we only included the one-way implementa-
tion cost of the trade. The expectation in this analysis is that the manager
would hold the acquired position over a longer period. Investors who are
looking to take advantage of a short-term trend and trade in and out of these
positions in shorter time horizons will also need to include the liquidation
cost (sell cost) of the trade. If the expectation is that the market conditions
will be the same during liquidation of the order, investors can simply double
the implementation cost (buy cost). But if the market conditions are ex-
pected to be different during liquidation, then acquisition managers could
use the techniques provided above to determine realistic liquidation costs
for the order based on their expectation for market conditions during these
times. Yet another reason why managers need their own market impact
models. These expectations can be incorporated into the optimization pro-
cess described above.
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Chapter19
Machine Learning and Trade Schedule

Optimization

INTRODUCTION
In this chapter we provide a technique to improve multiperiod trade
schedule optimization solution times. The approach is based on a machine
learning and neural network (NNET) methodology and provides nonlinear
optimizers with a better initial parameter value that can be used as a starting
point for the algorithmic trade schedule optimization problem. This tech-
nique results in 30%e75% faster optimization speeds. The usage of machine
learning and NNETs in conjunction with the trade schedule optimization
problem was previously studied by Kissell and Bae (2018).

In the chapter on Portfolio Algorithms and Trade Schedule Optimization,
we presented different techniques that could be used to express the trade
strategy as a functional form. This included: trade rate, percentage of vol-
ume (POV), exponential trade schedule, and residual trade schedule. Those
techniques were found to provide a dramatic improvement in nonlinear
optimization speed.

Simply by expressing the trade strategy as a functional form allowed
nonlinear optimization to solve our problem up to 99% faster. For example,
if solving the example multiperiod trade schedule optimization problem for
an n ¼ 100 stock trade list would take t ¼ 60 seconds, utilizing one of the
functional forms for the trade strategy allows the optimization to calculate
optimal solutions from 0.14 to 2.08 seconds. Now, by additionally utilizing
machine learning techniques in conjunction with these function form equa-
tions, we can further improve optimization speeds by an additional 30%
e75%. Therefore the n ¼ 100 stock trade list that would take 60 seconds
to calculate the optimal solution can now be solved in as little as 0.028e
0.098 seconds for the trade rate functional form and as little as 0.064e
0.224 seconds for the trade exponential functional form.

Algorithmic Trading Methods, Second Edition. https://doi.org/10.1016/B978-0-12-815630-8.00019-3
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The current trading environment has changed dramatically from only a few
years ago. Buy-side and sell-side firms are all using colocated servers and
ultrahigh speed computer networks to provide the fastest access to real-
time market data possible and faster computer processing. But supercom-
puters and colocation alone are no longer sufficient to ensure a firm will
be able to take advantage of favorable trading conditions and profitable op-
portunities when they arise in the market.

The quest in the algorithmic trading arms race has turned to using advanced
mathematical techniques and the usage of machine learning algorithms to
uncover hidden trends in data, provide better insight into future price move-
ment, and just as importantly, provide faster solutions. Firms who are not
using advanced analytics and machine learning as part of their everyday
algorithmic trading will quickly find that they are trying to race a drone
by driving a stagecoach. There is simply no comparison.

MULTIPERIOD TRADE SCHEDULE OPTIMIZATION
PROBLEM
The goal of multiperiod trade schedule optimization is to determine the
optimal trading strategy to minimize the total market impact cost of the or-
der and the overall time risk of the basket. The problem has often been
described as minimizing the trader’s dilemma and the general objective
function is as follows:

Min Market Impactþ l$Timing Risk

In this representation, market impact represents the cost due to the buying
and/or buying pressure of the order, timing risk represents the potential that
the investor will execute at less favorable prices due to random price move-
ment and market noise that is unrelated to the order, and l represents the
investor’s level of risk aversion.

It is important to note that when a portfolio manager is transacting a basket of
stock, the market impact cost of the basket is a linear combination of the mar-
ket impact across all stocks in the basket, but the timing risk expression is
much more complex and is calculated based on the covariance and correla-
tion across all stocks in the basket and the underlying execution strategy.

Setting up the Problem
The mathematical derivation of the complete trader’s dilemma using the I-
Star model has been previously formulated in Kissell and Glantz (2003) and
Kissell (2011, 2013).
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If the trader wishes to trade in fifteen-minute intervals there are 26 trading
intervals in the day. If the trader wishes to trade in five-minute intervals
there are 78 trading intervals in the day. If the trader wishes to trade in
one-minute intervals there are 390 trading intervals in the day. Smaller
and smaller trading increments dramatically increase the number of calcu-
lations required to determine the optimal solution. Furthermore, since the
market impact function is a nonlinear function, the required calculation
time for these problems grows exponentially.

For an n-stock trade list executed over 1 day with t trading periods, the math-
ematical formulation of this multiperiod trade schedule optimization prob-
lem is as follows:

Trader’s Dilemma Objective Function

Min
X
n

i¼ 1

 

X
t

j¼ 1

b1 $ IStari $
xij
Xi

$

�

xij
xij þ vij

�a4

þð1� b1Þ $ IStari
!

þ l$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
t

k¼ 1

rk$C$r
=
k

s
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xij
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X
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xij

LB� xij � UB

Here

IStar ¼ represents the instantaneous impact cost of the order, e.g., the
expected cost if the entire order were released to the market for full
execution
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Xi ¼ total order quantity in shares for stock i
ADVi ¼ average daily trading volume for stock i
si ¼ annualized volatility for stock i expressed as a decimal
rij ¼ residual shares of stock i at the beginning of period j
xij ¼ number of shares of stock i to trade in period j
vij ¼ the expected market volume of stock i in period j
C ¼ covariance matrix across all stocks in the basket adjusted for the
side of the order. For example, if two stocks are positively correlated
and one stock is a buy order and the other stock is a sell order, the covari-
ance between the two stocks in our covariance matrix will be negative.
Model parameters: a1, a2, a3, a4, b1 are used to estimate the market
impact cost of the order (see www.KissellResearch.com).
n ¼ total number of stocks in the trade list
t ¼ total number of trading periods over one-day, for example, a fifteen-
minute trading interval will have t ¼ 78 trading periods in the day
LB ¼ a minimum trade quantity in each period specified by the user until
the order is completed
UB ¼ a maximum trade quantity in each period specified by the user

The number of shares to trade in each period in the above formulation is the
optimization problem decision variable. This is what we are trying to
calculate.

This variable can be well approximated if we define the number of shares to
trade in each period as a mathematical function. This provides a dramatic
improvement in the optimization convergence speed. We previously pro-
vided four different ways to define the trade quantity as a function form.
These are:

Trade schedule exponential:

xij ¼ Xi$
e�jqi

Pn
k¼1e

�kqi

Residual schedule exponential:

rij ¼ Xi$e
�jui

Trading rate:

a ¼ Xij

vij
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POV:

POVi ¼ xij
xij þ vij

The benefit of defining the trade quantity in each period as an equation is
that it allows us to:

n Directly calculate the number shares to trade in the trade period.
n Compute an analytical derivative (e.g., gradient) of the equation, which

provides fast optimization convergence.
n Provide fewer parameters per stock, e.g., one decision parameter

compared to one decision variable for each trade period, thus addition-
ally increasing optimization speed because there are fewer decision pa-
rameters to calculate.

These allow the nonlinear optimization convergence algorithm to solve
dramatically quicker since it reduces the overall number of calculations
needed and allows us to compute extremely precise values.

NONLINEAR OPTIMIZATION CONVERGENCE
The nonlinear multiperiod trade schedule optimization problem is solved
via a convergence algorithm because there are no direct analytical solutions
to the problem. The basic idea of the convergence is that the optimization
starts with an initial solution or guess of the parameter value. This initial
value is also known as the starting solution to the problem. The conver-
gence process then adjusts the parameter value using an updating routine
until the change in parameter value is within a specified tolerance level.

There are several different nonlinear optimization convergence algorithms
used in industry to solve these complex problems. For example, trust region
reflective algorithm, sequential quadratic programming, quadratic program-
ming subproblem, interior point algorithm, BroydeneFletchereGoldfarbe
Shanno algorithm, conjugate gradient step, steepest descent, generalized
reduced gradient, and numerous others.1

An explanation of a nonlinear optimization convergence routine is as fol-
lows. The optimizer starts with an initial guess of the optimal solution
x ¼ x(0). The convergence algorithm then performs its updating routine
and calculates the next parameter value x ¼ x(1). The algorithm then calcu-
lates the difference in the previous two parameter values x(0) and x(1) to

1See www.Mathworks.com for a complete collection of optimization routines used in
MATLAB.
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determine how much the parameter value has changed. If the change in
parameter value is less than a specified tolerance value ε, then the conver-
gence algorithm is completed and we have the final answer and our optimal
solution. If the difference between the last two parameter values are not
within the tolerance value, then the convergence algorithm continues its
updating routine until the change in parameter value is within the tolerance
value. The specified tolerance value ε provides the amount of precision
required to solve the problem and will be different for different types of
problems. For example, solving a multiperiod trade schedule optimization
problem may suffice to set the tolerance to be ε ¼ 0:005, e.g., 0.5%,
because the current state or trading algorithms can only utilize percentage
of volume rates defined by 1% intervals. If we are developing a GPS location
device for a new cell phone and data service, the tolerance may need to be
much smaller such as ε ¼ 10�16 feet or inches. The specified tolerance
value for the parameter needs to be specified for each individual problem.

The mathematical notation used in this type of convergence process is:

x(0) ¼ initial solution, also known as the initial parameter value and/or
starting solution
x(i) ¼ parameter value after the ith iteration, determined via a nonlinear
convergence algorithm
x(iþ1)�x(i) ¼ change in parameter value
ε ¼ specified tolerance value for change in parameter value

The algorithm will calculate a revised parameter value based on its updating
routine. If

�

�xðiþ1Þ �xðiÞ
�

� < ε, then the algorithm is completed. Otherwise,
the algorithm will continue to iterate and calculate revised parameter values
until the change in parameter value is less than the specified tolerance
value ε.

Fig. 19.1A illustrates the convergence algorithm routine for a minimization
problem using initial solution x(0) that is far from the true function minimum
value x*. For example, start with an initial parameter value of x(0). Update the
parameter value using the convergence algorithm’s updating routine
yielding x(1). Since the change in parameter value is not less than a specified
parameter value, then the convergence algorithm calculates the next param-
eter value x(2). The process continues through n ¼ 11 iterations when we
calculate x(11). Finally, the change in parameter value is less than the spec-
ified tolerance. In total, starting with x(0) required n ¼ 11 iterations before
we arrived at the final optimal solution x(11) ¼ x*.
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Fig. 19.1B illustrates the convergence routine for the same function but we
start with an initial solution x(0) that is much closer to the true function min-
imum value x*. In this example, since we have a better initial solution, we
only need n ¼ 3 iterations to arrive at the final optimal solution. Obviously,
when we solve these problems it is always in our best interest to start with an
initial solution that is as close as possible to the function minimum value to
reduce the number of calculations needed to find our answer, thus ultimately
translating to quicker calculation times. In this example, starting with the
initial solution in Fig. 19.1B the answer was found after three iterations
compared to 11 iterations required when using the starting solution
(Fig. 19.1A). This results in a 73% improvement in the number of iterations
needed to solve the problem. Having faster solutions for algorithmic trading
needs is essential.

Newton’s Method
Nonlinear convergence techniques are not new to any reader who has taken
a course in calculus or its predecessor precalculus. In these courses, students
are presented with a technique to find the roots of an equation using New-
ton’s method (also referred to as the NewtoneRaphson method).

(A) (B) Non-Linear Optimization with Intial

Solution that is Close to the Minimum Value

Non-Linear Optimization with Initial

Solution that is Far from the Minimum Value

x(0)

x(0)

x(2)

x(1)

x(2)

x(4)

x(6)

x(8)

x(10)
x(9)

x(7)

x(5)

x(3)

x(1)

x(11) = x* x(3) = x*

n FIGURE 19.1 Machine Learning and Frade Schedule Optimization. (A) Non-linear Optimization with
Initial Solution That is far From the Minimum Value. (B) Non-Linear Optimization with Initial Solution
that is Close to the Minimum Value.
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For example, we can use Newton’s method to find the square root of a num-
ber c. The process behind this method is as follows:

Start with:

x ¼ ffiffiffi

c
p

Square both sides:

x2 ¼ c

Set equal to zero:

x2 � c ¼ 0

Specify our function as:

f ðxÞ ¼ x2 � c

Calculate the root x using an updating iterative routine using Newton’s
method where the updated x(iþ1) value for iteration i þ 1 is:

xðiþ1Þ ¼ xðiÞ � f ðxÞ
f 0ðxÞ

where f(x) is the function and f 0(x) is the derivative of the function. We
continue to apply the updating routine until the change in parameter values
is less than a specified tolerance value ε. This is:

�

�xðiþ1Þ � xðiÞ
�

� < ε

The required tolerance value is based on the need of the analyst and will be
specified for each individual problem.

Example #1
Use Newton’s method to calculate

ffiffiffi

2
p

for a tolerance level of precision of
ε ¼ 10�16, i.e., within 16 decimals.

Start by defining the function and its derivative to be:

f ðxÞ ¼ x2 � 2

f 0ðxÞ ¼ 2x

Then the updating routine is:

xðiþ1Þ ¼ xðiÞ � x2 � 2
2x

526 CHAPTER 19 Machine Learning and Trade Schedule Optimization



Starting with an initial value of x(0) ¼ 1.5, each iteration is shown in
Table 19.1. Depending on the precision needed for the square root of 2
we solve our problem after three, four, or five iterations. Since we are inter-
ested in the square root of 2, that answer is both positive and negative. Thus
if we are interested in a solution to four decimal places the solution to the
square root of 2 is:

ffiffiffi

2
p

¼ � 1:4142

Also, it is important to note that if we started with an initial value much
higher or much further away the convergence we require would have
more iterations and take longer to solve.

Example #2
Use Newton’s method to calculate the cubed root of 173, that is, find

ffiffiffiffiffiffiffiffi

1733
p

.
That is, we want to find the roots of the equation x3 � 173 ¼ 0.

Start by defining the function and its derivative to be:

f ðxÞ ¼ x3 � 173

f 0ðxÞ ¼ 3x2

Then the updating routine is:

xðiþ1Þ ¼ xðiÞ � x3 � 173
3x2

Starting with an initial value of x(0) ¼ 10, each iteration is shown in
Table 19.2. Depending on the precision needed for the cubed root of 173,
we need from five to seven iterations to arrive at our answer. If we have
five decimals of precision the solution is:

ffiffiffiffiffiffiffiffi

1733
p

¼ 5:57205

Table 19.1 Square Root of 2.

Iteration x f(x) f0(x) Chg

0 1.5 0.25 3

1 1.4166 0.006944 2.8333 �0.08333

2 1.4142 6.000730 2.82843 �0.00245

3 1.4142 4.51061 2.82843 �2.12389

4 1.4142 0 2.82843 �1.59472

5 1.4142 0 2.82843 0
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MACHINE LEARNING
The significance of machine learning is that it provides computers with the
ability to learn the solutions to new and complex problems based on histor-
ical data and underlying patterns within the data without the need to explic-
itly program or define the underlying relationship between input data and
output results. We now show how machine learning and NNETs can be
used to assist investors and traders to determine the best possible initial
starting solution to solve the multiperiod trade schedule optimization prob-
lem quicker. As previously discussed, having a better starting solution that
is closer to the true optimal value will allow the optimization technique to
solve with fewer iterations and in a much faster amount of time.

One item that we have not yet addressed is how exactly we can determine
the best possible starting solution or at least a starting solution that is very
close to the true optimal value, especially for a complex problem such as the
multiperiod trade schedule optimization problem and trader’s dilemma. To
address this need, we turn to machine learning and NNETs.

Machine learning is comprised of unsupervised learning, supervised
learning, and semisupervised learning. Unsupervised learning consists of
the machine learning algorithm categorizing input data into groups based
on common attributes and characteristics. Unsupervised learning only re-
quires input data and does not have any predicted output values. Supervised
learning consists of the algorithm learning relationships between the x-input
data and y-output data (e.g., response items, predicted value, etc.). In super-
vised learning, the algorithm uncovers the relationship between the input
data and output values using advanced mathematical techniques. Semisuper-
vised learning is a technique based on both supervised and unsupervised
learning techniques and where the algorithm may need to determine

Table 19.2 Cubed Root of 173.

Iteration x f(x) f0(x) Chg

0 10 827 300

1 7.2433 207.0278 157.398 �2.75667

2 5.9280 35.3186 105.424 �1.31532

3 5.5930 1.95839 93.845 �0.33501

4 5.5721 0.0073 93.146 �0.02087

5 5.5720 1.0261 93.1434 �0.0008

6 5.5720 0 93.1434 �11017

7 5.5720 0 93.1434 0
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relationships between the input and output data, and/or also determine
appropriate categories for the input data and/or the output data to assist
with the underlying predictions.

Machine learning has been used to address three areas of computational
needs: cluster analysis, classification analysis, and regression analysis.
Cluster analysis is comprised of unsupervised learning and consists of the
algorithm categorizing data into groups with similar traits and characteristics.
Classification analysis is comprised of supervised learning and consists
of the algorithm categorizing the data into prespecified groups. In classi-
fication analysis, the algorithm utilizes advanced mathematics, and prob-
ability and statistical theory to determine the likelihood that a data item
belongs to a specified group.
Regression analysis is also a type of supervised learning and consists of
predicting an output data value or data values based on uncovered rela-
tionships between the input and output data. This is used for predictive
analytics for both linear and nonlinear models.

Machine learning is also used for problems relating to natural language pro-
cessing, text analytics, voice, visual, and pattern recognition. For these
problems, the machine learning algorithms use semisupervised learning
techniques where the need is often to make a prediction and also to group
input and output data into similar groups for easier and more efficient cal-
culations. For example, there are different ways to ask a question pertaining
to the day’s temperature. We can ask the computer what the weather will be
in the afternoon, what the temperature will be in the afternoon, whether I
should bring a jacket and umbrella for a walk in the park, etc. These are
very similar questions and will likely have identical answers. So rather
than train the computer to have an answer for every possible way of asking
about the weather, the computer will apply unsupervised learning tech-
niques first to group these questions into common clusters and then to
make predictions about the weather and temperature later in the day based
on supervised learning techniques.

The nice part about using machine learning to predict output values is that
we do not need to specify any relationship between the data and the output
values in advance of postulating any structural form or equation. Machine
learning techniques uncover and find the appropriate relationship, i.e.,
they learn the relationships embedded in the data. Machine learning and
its use in industry has advanced recently due to the large quantity of data
available and computational power of computers. But machine learning
has also advanced due to the rapidly expanding understanding of applicable
mathematics and customized machine learning algorithms.
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Neural Networks
To determine the appropriate starting solution for the multiperiod trade
schedule optimization problem we will use machine learning and NNETs.
An NNET) or an artificial NNET as it is also commonly referred to in
the industry is a process that mimics the way our human brain receives
and processes information. The structure of an NNET consists of input
data (e.g., x-data), hidden layers and nodes that uncover relationships be-
tween the x-input data and the y-output data, and the output data. Calcula-
tions are performed at each node and the solution algorithm determines
the proper weighting to apply to the data at each node. Each node computes
a new output data value based on a mapping function that maps the data
value to be commonly between [0, 1] and [�1, 1] using a mapping function.
Common mapping functions include the sigmoid and inverse tangent func-
tions. Problems that are more complex often require NNETs that consist of a
very large number of hidden layers and nodes. These large NNETs are often
referred to as deep learning algorithms. Readers interested in learning more
about structuring NNET models are referred to Freeman (1994) and Schmid-
huber (2015).

An example of an NNET layout is shown in Fig. 19.2. In this illustration,
there is an input layer that consists of the n-input variables. There are three
hidden layers. The first hidden layer has two nodes, the second layer has
three nodes, and the third layer has two nodes. Analysts additionally need
to specify the transfer function to use at each layer. Lastly, the NNET layout
consists of an output layer with one output value. A large difference between
machine learning using NNETs and a regression model is that the NNET can

x1

x2

x3

xn

y

<Input> <Output><Neural Network Hidden Layers>

n FIGURE 19.2 Neural Network Structure.
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efficiently accommodate more than one output vector. That is, more than a
single y-output value.

Neural Network Errors
A concern about NNETs is that they may overfit or underfit the data. Over-
fitting the data refers to a situation where the network learns the patterns and
relationships for the input data but is not able to accurately predict outcomes
for different sets of input data. Underfitting the data refers to a situation
where the NNET is not able to accurately estimate the training data or
make accurate predictions based on new input data.

While overfitting and underfitting are always concerns with NNETs and
deep learning, in our situation the worry is not as important. The reason
why is that we will not be using the answer or results from the NNET to
make any investment or trading decisions. We will, however, be using these
results as input into the multiperiod trade schedule optimizer. The worse
case that can arise is that the nonlinear optimization algorithm may take
longer to converge than if we did not rely on an NNET to provide the initial
starting point. But even this can be resolved if we utilize a large enough and
robust enough training sample data set. And since we are simulating the un-
derlying training data set we can generate as much large and robust data as
we need. The only drawback is the time required to train the NNET, but
once the network is trained the model will provide instantaneous predictions
when provided with the input data vector.

MACHINE LEARNING TRAINING EXPERIMENT
We performed a machine learning trading experiment to assist us to deter-
mine the best starting solution for trade schedule optimization. This exper-
iment is set up as follows:

Step I: Generate simulated trade baskets. Randomly generate different
trade baskets (e.g., programs) and select stocks for the basket.
Step II: Compile stock and basket data statistics. These data are gener-
ated for each stock in the basket and for the overall basket. These data
will be the x-input data vectors used to train the NNET.
Step III: Solve the multiperiod trade schedule optimization problem. For
each simulated trade basket, calculate the optimal trading strategy using
the nonlinear optimizer using random initial parameter values. These
optimal results data will be the y-output data used to train the NNET.

Machine Learning Training Experiment 531



Step IV: Train the NNET. Train the NNET using the x-input data from
step II and optimal y-output data from step III. Determine which data
items and NNET structure provide the best overall fit.
Step V. Calculate the initial parameter values using the NNET. After the
NNET is trained, we can calculate the initial parameter values and start-
ing solution for the multiperiod trade schedule optimization. The closer
the predicted value is to the actual value, the quicker the nonlinear opti-
mizer will calculate the answer.

These steps are provided in further detail below.

Step I: Generating Simulated Trade Baskets
Generate the trade basket data for different trade baskets and basket statis-
tics. Stocks were selected at random from the SP500 index as of January 31,
2019. We generated 23 different basket sizes. The number of stocks in each
basket was n ¼ 5, 10, 20, 25, 50, 75, 100, 125, ., 475, 500. For each trade
basket size, we simulated n ¼ 100 different trade baskets. This provided
2300 different trade baskets and 528,500 data vectors.

Readers and analysts can generate more data vectors by using a larger num-
ber of basket sizes and performing additional simulations (e.g., >100).

Order sizes for stocks in the basket were randomly selected to be in the
range 0.01%e35.00% average daily volume. The analysis consists of 50
samples of a one-sided basket (e.g., all buys or all sells) and 50 samples
of two-sided baskets (e.g., buys and sells). Two-sided baskets were selected
so that the dollar weight was distributed from 95% buys and 5% sells to 5%
buys and 95% sells, and random proportions in between. This ensures that
we have robust sampling of possible trade lists.

Actual stock data as of January 31, 2019 was used in these scenarios, e.g.,
volatility, prices, covariance, and correlations across all stocks in the SP500
index. Additionally, each basket was randomly defined with a different risk
aversion parameter l that was in the range 0 � l � 3.

Step II: Compile Stock and Basket Data Statistics
For each stock in each basket, we computed various order data statistics and
portfolio-level statistics. The most important stock-specific data to deter-
mine optimal trading rates includes: order size, volatility, price, market
impact cost, timing risk, lambda (the user’s level of risk aversion), charac-
teristics, risk metrics, user risk-aversion levels, etc. For example, for each
stock we calculated order size, volatility, risk contribution, marginal
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contribution to risk, weight in the portfolio, risk reduction, market impact
cost, timing risk, etc.

The most important information for a basket multiperiod trade schedule
optimization includes the overall risk of the basket and each stock’s overall
contribution to the risk in the basket. This includes portfolio-level risk sta-
tistics. For example, if all stocks are perfectly correlated and the basket is
one sided, the then optimal trade rate for each stock in the basket would
be identical to the optimal trading rate for the stock if it were traded indi-
vidually as a block (e.g., not part of the basket). The risk reduction of the
basket and the stock’s individual contribution to the risk reduction are
what defines the stock’s optimal trading rate as part of the basket.

In total this provided an x-input vector of 528,500 data rows with 18
different data fields. There is also a y-output data item. These data statistics
are as follows:

X-Input Variables
n Size: order size expressed as a percentage of average daily trading

volume
n Volatility: annualized stock volatility
n Side: side of the order, 1 ¼ buy or cover, �1 ¼ sell or short
n Lambda: investors level or risk aversion
n I-Star: instantaneous market impact cost
n Temporary market impact: temporary market impact cost
n Permanent market impact: permanent market impact cost
n Timing risk: full-day timing risk based on a full-day volume-weighted

average price strategy
n Single stock optimal trade rate: the optimal trading rate for the stock if

the stock were to be traded individually as a block order. This is calcu-
lated using stock data and the risk-aversion parameter for the basket.

n Weight: stock’s dollar value weight of the order in the basket
n Net dollar change: the net dollar value percentage with the order minus

the net dollar value percentage without the order. The net dollar value
percentage is computed as the net dollar value (buy value e sell value)
divided by total trade value of the basket (buy value þ sell value). This is
to provide an indication of the level of risk reduction provided by the
stock.

n Risk diversification: overall portfolio risk computed based on covari-
ances and correlations across all stocks in the basket divided by the
weighted volatility of the portfolio. This is a measure of the level of
diversification of the basket.
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n Risk contribution: stock’s contribution of risk to the basket. The risk of
the basket with the order minus the risk of the basket without the order.

n Marginal contribution of risk: how the risk of the basket changes if the
stock’s order size was reduced by 10%

n Avg size: stock’s order size divided by the average order size of the
basket

n Avg volatility: stock’s volatility divided by the average stock volatility
in the basket

n Avg weight: stock’s weight divided by the average stock weight in the
basket

n Number: number of stocks in the basket (measured as the inverse,
1/number)

Y-Output Variable
n Y[ trade rate, the optimal trade rate for each stock in the order deter-

mined from the nonlinear multiperiod trade schedule optimizer. See step
III below.

Step III: Solve the Multiperiod Trade Schedule
Optimization Problem
We ran the nonlinear multiperiod trade schedule optimization for each of
the 2300 baskets. We used the trade rate as the functional form for the trade
strategy. The trade rate is:

Trade Rate ¼ Shares

Expected Volume without the Order

The trade rate can be converted to a POV rate for use in algorithmic trading
as follows:

POV ¼ Trade Rate$
1

1þ Trade Rate

The optimal trading rate for each stock is denoted as follows:

yij ¼ actual optimal trade rate for stock in basket i and stock j

Readers can duplicate this experiment using different trade strategy formu-
lations. For example, in addition to the trade rate, readers can perform this
experiment using POV, the exponential trade schedule parameter, and the
residual trade schedule parameter. The technique in this section provides
a methodology to determine an appropriate starting point and initial param-
eter value for any of the trade strategy formulations.
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Step IV: Train the NNET
We train the NNET using the x-input data and optimal y-output data. This
consists of determining:

1. which input data items have the most predictive power, and
2. the structure of the most predictive NNET model.

First, we are tasked with determining the subset of x-input data variables to
use in the model. Here we need to determine if the variable is a statistically
significant predictor of the output variable trade rate. If it is statistically sig-
nificant, then the variable should be included in the model. But if it is not
statistically significant, the variable should be removed from the model.
Additionally, since many of the x-input data items specified above are corre-
lated, we need to find the subset of variables that are independent and statis-
tically significant. For example, we know that the x-input data variables’ size
and weight are correlated since both variables are calculated using the num-
ber of shares in the order. That is, larger order sizes often have larger port-
folio weights. Also, x-input data variable timing risk and volatility are
correlated, as are marking impact, size, and volatility. Thus we are tasked
with determining the subset of independent data variables that are indepen-
dent and have statistically significant predictive power.

In regression analysis, determining the subset of data to include in the final
regression model is a much easier task than it is with machine learning and
NNETs since we can calculate a t-stat, f-stat, R2, and standard error of
regression models. However, evaluation of the data variable is more difficult
when using machine learning and NNET models. A solution to address this
problem is provided below.

Second, we need to determine the structure of the most predictive NNET
model possible. This requires us to determine the appropriate number of
hidden layers and the appropriate number of nodes at each layer, as well
as the transfer function at each layer. Unfortunately, there is no direct
way to determine the best NNET structure for the problem at hand. There
are times in industry when a simple relationship requires a complex
NNET structure with many hidden layers and nodes, and there are times
when a complex relationship can be solved with a basic and simple
NNET structure.

In regression analysis we do not encounter this difficulty because we must
first specify the function form of the model, e.g., linear, polynomial, loga-
rithmic, power function, etc. If we specify the appropriate function form the
model will perform well but if we specify a function form that is not correct
the model will lead to erroneous results.
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Step V. Calculate the Initial Parameter Values for
the NNET
After we determine the appropriate set of statistically significant x-input fac-
tors and NNET structure, and train the NNET, we can directly calculate the
initial parameter value to use as the starting solution in the nonlinear optimi-
zation model.

The training of the network can be quite time consuming, even after deter-
mining the appropriate set of x-input variables and NNET structure. Howev-
er, after training, calculations from the NNET will be a direct mathematical
solution based on the NNET structure and the solved weights. These calcu-
lations are as quick as computing values from any mathematical equation.
After the NNET is trained, we no longer need to iterate to calculate a result
from the model.

The closer the estimated trade rate (determined from the NNET) is to the
actual optimal trade rate, the quicker the nonlinear optimizer will be able
to solve the multiperiod trade schedule optimization problem.

Principal Component Analysis
As stated above, our x-input data set starts with 18 data variables. To help
determine the number of independent variables to use in the model we turned
to principal component analysis (PCA). PCA found that five variables
explained 95% of the data variation, eight variables explained 99.5% of
the data variation, and 10 variables explained 99.7% of the data variation.
Therefore the insight that PCA provides is that we can expect to have be-
tween 5 and 10 independent x-input factors in our NNET model. This
PCA analysis informs us that using more than 10 independent factors in
our model will not provide incremental benefit or improvement to the model
performance since these variables are correlated with variables already
included in the model. This is shown in Fig. 19.3.

Stepwise Regression Analysis
The approach to determine the set of statistically significant factors and
model structure is based on a stepwise feed-forward training technique.
In this methodology, we find the best variable to include in the model by
evaluating the model performance for all the variables individually. Once
we determine the best variable to include in the model it will be a permanent
member of the model. We then evaluate two combinations of variables that
consist of the permanent member and every other individual variable. Vari-
ables become permanent members if they have the lowest error term. This
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process is repeated until we evaluate all possible combinations based on the
best performing variables.

For example, if there are four variables {A, B, C, D} we evaluate the model
using each variable individually. This results in four training solutionsdone
for each variable. If variable A is associated with the best fit model, then
variable A is a permanent member of the model. We then evaluate every
two-variable possibilities that include A. These are {AB, AC, AD}. If we
find that the model with variables A and C corresponds to the best fit model,
then A and C become permanent members of the model. This process is
repeated until we evaluate all possibilities. For a four-variable scenario there
would be n ¼ 4 þ 3 þ 2 þ 1 ¼ 10 total model evaluations required. This
iterative approach is preferred over traditional correlation analysis because
the relationship between the data item and output result may be very
nonlinear and may contain a relationship that is not easily uncovered using
traditional correlation and partial correlation analysis.

In our problem there are 18 input variables. Therefore there are
n ¼ 18 þ 17 þ 16 þ . þ 2 þ 1 ¼ 171 possible member groupings that
will need to be evaluated. Notice that the number of possible member groups
is not a combination problem because of the iterative nature of the problem.
Once we find the next permanent member of the group we do not need to
evaluate other possible subgroups that do not contain this member. This
dramatically reduces the number of possible groupings that need to be
evaluated.
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Next, since we do not know the best NNET structure for the data we will
evaluate different structures. We select five different structures to be part
of our analysis. Readers can repeat this experiment with a larger number
of NNET structures to find a better fit model. Therefore our stepwise regres-
sion analysis consists of N ¼ 171.5 ¼ 855 different model analyses. Please
note that training 855 different NNETs is a very data- and time-intensive
process and was done as part of this research over a 1-month period. Kissell
and Bae (2018) provided a detailed analysis of how to evaluate statistically
significant data in conjunction with machine learning testing 120 different
NNET structures.

Steps to evaluate data are as follows:

Step 1: Select one of the 18 variables to include in the NNET training.
Step 2: Determine the best NNET structure for the variable (based on five
different structures). That is, determine the number of hidden layers and
nodes at each layer that gives the best result for the variables.
Step 3: Record the error term of the model. The error term is calculated as
the standard deviation of the difference between the actual y-output var-
iable determined from the nonlinear optimizer and the predicted y-vari-
able determined from the NNET in step 2 above. That is:

ε ¼ stdevðy�byÞ

Step 4: Repeat for each variable.
Step 5: Determine which variable to include as a permanent member in
the model based on the lowest error.
Step 6: Repeat through all variable possibilities. Once a data variable is
selected based on the smallest error it becomes a permanent member of
the group.

The results of this analysis found the best fitting 10 data variables to be:

n Avg size
n Avg volatility
n Avg weight
n IStar
n Lambda
n Net dollar change
n Risk diversification
n Risk contribution
n Single stock optimal trade rate
n Timing risk
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Neural Network Structure
The best fit NNET structure for the 10 variables model is a network consisting
of three input layers. The first layer consists of four nodes. The second layer
consists of six nodes. The third layer consist of four nodes. The first layer uses
an inverse tangent transfer function. The second layer uses an inverse tangent
transfer function. The third layer uses a sigmoid transfer function.

Neural Network Error
Fig. 19.4 shows the results of the best fit model from one input variable
through 18 input variables. We also included the error using a randomly
generated starting value. Notice that by using a random starting value the er-
ror is 14.34%. This is shown for comparison purposes only. By using
NNETs to help determine the best initial parameter value the error term re-
duces almost in half to 7.35%. The best fit model using five input variables
has an error term of 1.31%, eight input variables has an error of 1.14%, and
10 input variables has an error of 1.13%. Including all variables in the NNET
resulted in an error of 1.06%. The NNET techniques described above
reduced the error between the initial parameter value and optimal parameter
value from 14.34% to 1.13% (with 10 variables).

We conclude that the appropriate number of variables to include in the
NNET model are between 8 and 10. Including more than 10 variables
does not provide an improvement in results. We leave the actual number
of variables to include in the model up to readers and encourage them to
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repeat this experiment using customized trade baskets based on their trading
and investment objectives.

Fig. 19.5 provides a scatter diagram showing the initial trade rate value
calculated from the NNET and the optimal trading rate solution from the
nonlinear optimizer for the 10-variable model. A two-standard deviation er-
ror band is also included in the graph. This graph shows how well the NNET
can learn the relationship between trade basket statistics and optimal trading
rate. The error between initial parameter value and optimal trading rate is
1.13%. This means that the NNET can determine the solution within
�1.13% of the optimal trading rate without any optimization calculations.

PERFORMANCE RESULTS
In this section we evaluate the computational speed improvement from our
machine learning/NNET model. As stated above, there were 23 different
trade basket sizes and for each basket size we simulated 100 different trade
lists. Thus there were 2300 baskets in total. We ran the nonlinear optimizer
for each of the 2300 baskets using a random starting solution and a starting
solution determined from our NNET.

The computational speed performance improvement provided by the ma-
chine learning NNET was dramatic. Using an initial parameter value calcu-
lated from the NNET model provided speed improvement from 30%
quicker for small trade lists (n ¼ 5 stocks) to 50% faster for medium trade
lists (n ¼ 100 stocks), and as much as 70%e75% quicker for large trade lists
(n ¼ 250e500 stocks). This dramatic improvement in solution time
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provides traders with improved chances to take advantage of profiting oppor-
tunities when they exist in the market before their competitors.

Fig. 19.6 shows the average solution time in seconds for the 23 different
trade basket sizes each with 100 simulations for both a random starting so-
lution and the machine learning solution. The graph shows how the solution
time increases for different basket sizes. There is a small improvement in
computational speed performance for the smaller basket sizes, increasing
to a very large improvement for the larger basket sizes. Fig. 19.7 shows
the percentage speed improvement provided by the machine learning
NNET. The graph shows the improvement in solution time starting at
30% and increasing to 70%e75% faster for larger basket sizes. This type
of speed improvement allows traders and investors to act upon profitable op-
portunities when they arise in the market by allowing investors to uncover
these opportunities before their competitors.
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CONCLUSIONS
In this chapter we provided a framework to improve the optimization speed
for multiperiod trade schedule optimization problems. The approach is
based on machine learning techniques and NNETs and is used to find a bet-
ter starting solution for the initial parameter value. Having a better starting
solution that is closer to the true optimal value will allow the optimizer to
solve the problem in a much quicker amount of time. This chapter also pro-
vided a data analysis experiment that allows readers to determine the most
appropriate subset of data to include in the model (i.e., data variables that
are independent and statistically significant predictors of the output vari-
able) and a process to determine the most appropriate NNET structure to
solve the problem. The optimization results using a starting solution that
was calculated from the NNET provide much faster solutions. This method-
ology provides a speed improvement of 30% for small trade
baskets (n < 25), 50%e60% for medium trade baskets (n ¼ 100e250),
and 65%e75% for large trade baskets (n ¼ 250e500). Having faster com-
putations allows investors to uncover profiting opportunities in the market
before their competitors and thus achieve higher profits by taking advantage
of money-making opportunities (Table 19.3).

Table 19.3 Neural Network Analysis.

Variables PCA Variation Cumulative Variation NNET Error

0 14.34%

1 44.8% 44.81% 7.35%

2 26.3% 71.09% 4.56%

3 13.2% 84.28% 3.41%

4 7.2% 91.45% 1.87%

5 4.3% 95.72% 1.31%

6 2.4% 98.14% 1.25%

7 1.3% 99.40% 1.19%

8 0.1% 99.53% 1.14%

9 0.1% 99.64% 1.13%

10 0.1% 99.75% 1.13%

11 0.1% 99.84% 1.12%

12 0.1% 99.91% 1.11%

13 0.0% 99.95% 1.10%

14 0.0% 99.97% 1.09%

15 0.0% 99.99% 1.08%

16 0.0% 99.99% 1.07%

17 0.0% 100.00% 1.07%

18 0.0% 100.00% 1.06%
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Chapter20
TCA Analysis Using MATLAB, Excel,

and Python

INTRODUCTION
In this chapter we describe a custom transaction cost analysis (TCA) process
that can be employed by financial professional to manage trading costs
throughout all phases of the investment cycle. This process will allow finan-
cial professionals to perform TCA on their own desktop without the need to
access a broker-dealer or third-party server or API. The advantage of this
process is that it provides investors with an independent analytical tool
and it allows investors to eliminate all possibility of information leakage
stemming from accessing outside systems and data because all analyses
are performed on the investors own desktop without needing to access any
outside system or data source. This TCA process provides investors with
the ability to incorporate TCA into all phases of the investment cycle result-
ing in improved trading costs and portfolio performance.

Developing customized TCA analytical tools as a standalone application that
can be run from the client’s desktop such as within Excel has been previously
discussed by Kissell (2018a), Kissell (2018b), and Kissell & Zhang (2017).

TCA is being used for different investment professionals at different times
during the investment cycle. For example, TCA is used by brokers, traders,
portfolio managers, and compliance managers. These are as follows:

Brokers: Brokers use TCA to help investors determine which broker algo-
rithm is best for the investor given the characteristics of the trade list (e.g.,
symbol, side, and size), current market conditions (e.g., liquidity, average
daily volume, and volatility), and investment objective of the fund. Brokers
use TCA to help determine which underlying strategy or specific algorithm
is best for the investor. Brokers rely on the TCA costs estimates during
trading to determine if, when, and how they should modify the algorithm
based on actual real-time performance, if they should trader faster or slower,
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and if they should take advantage of favorable market conditions during
trading if it is deemed appropriate.

Traders: Traders use TCA after they receive an order from the portfolio
manager to help understand the potential market impact cost and timing
risk of the trade. Traders prefer to perform TCA analysis on their own desk-
tops to ascertain independent and objective cost estimates, and not be sub-
ject to criteria and constraints embedded in broker models. For example,
broker and third-party TCA systems are customized for the broker’s trading
strategies and these specific algorithms and may not provide investors with
a full spectrum of the set of potential costs for the trade. Furthermore, third-
party and broker cost estimates may have been calibrated from the broker’s
customers which may have a much different style and cost than for the
investor. Traders who perform their own TCA analysis on their own
desktop can customize the analysis for their specific trading needs. Traders
also use TCA analysis to measure actual trading costs of an execution and to
evaluate the performance of the broker.

Portfolio Managers: Portfolio managers use TCA to assist with stock selec-
tion, liquidation cost analysis, and portfolio optimization. First, portfolio
managers utilize TCA to help determine the appropriate order size and share
quantity that can be transacted in the market within the managers specified
price levels. Managers use TCA to determine how expensive it may be to
liquidate a position under extreme market conditions such as an environ-
ment where volatility spikes, liquidity decreases, and/or where company
fundamentals fall apart. Broker and third-party vendor models may only
allow analysis based on current market conditions and not based on poten-
tial markets conditions that may arise sometime in the future. But many
times, portfolio managers are interested in expected trading costs that
may arise under these extreme conditions when the fund is forced to liqui-
date the position. In these situations, portfolio managers want to keep both
the identity of the suspect socks and the trigger markets conditions a secret
from outside parties. If brokers or third parties are privileged to these fund
specific items that would cause a large trade it would be possible for those
parties to exploit this knowledge and realize a profit at the expense of the
fund. Portfolio managers also incorporating TCA into actual portfolio opti-
mization. In these cases, the portfolio optimizer is managing the trade-off
between return, risk, and market impact cost. Portfolio managers are best
served by performing these analyses on their own desktops to preserve their
valuable proprietary research and stock selection decision-making process.
Portfolio managers feel that if they utilize a broker or third-party system,
that venue will be able to reverse engineer the PMs valuable stock selection
process. Thus, resulting in a need for independent TCA analytics systems
that can run on the investors desktop.
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Compliance Managers: Compliance managers use TCA to ensure that their
broker partners are providing best execution and are complyingwith the funds
trading instructions. Compliance managers measure broker trading costs and
evaluate broker trading performance. Compliance managers will also eval-
uate the complete trade order to ensure that the order was executed following
instructions specified by the buy-side firm. These managers may also use the
analytical reports as a check list to ensure their brokers and trading partners
provide all the subscribed services and provide best execution.

TRANSACTION COST ANALYSIS FUNCTIONS
TCA is classified into three different categories: pretrade, intraday, and
posttrade analysis. These are described as follows:

Pretrade Analysis. Pretrade analysis assists traders understand the cost
consequence of an order based on the order characteristics (symbol, side,
shares, and strategy) and market conditions at the time of trading (price, vol-
ume, liquidity, and volatility). Traders use pretrade analysis to evaluate the
potential set of costs for different order sizes, trade strategies, and execution
algorithms. Pretrade analysis will serve as the basis to measure trading costs
and evaluate trading performance as part of the posttrade analysis. Pretrade
analysis provides the analytical framework for investors to make their macro
level algorithmic trading decisions.

Portfolio managers also perform TCA pretrade analysis as part of their stock
selection process. Managers use costs curves to help determine the optimal
holding size for the portfolio and the appropriate execution strategy to maxi-
mize the likelihood that the manager will be able to transact the desired
quantity of shares within their price limits. Portfolio managers and traders
both use pretrade analysis to evaluate how trading costs and market impact
will change for larger and smaller orders, and how costs will change based
on changing volatility and trade strategy (measured in terms of trading time
and percentage of volume). This type of pretrade analysis is often referred
to as sensitivity analysis. Pretrade reports also show how we can calculate
optimal trading strategies to solve the trader’s dilemma and balance the
tradeoff between market impact and timing risk given the risk aversion of
the fund. Since all funds have different levels of risk aversion, different
funds will have different optimal trading strategies even for the exact
same order and same exact market conditions.
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Portfolio managers also use a variation of pretrade analysis referred to as
liquidity costs analysis to measure the expected cost of liquidating an order.
Here, managers are interested in determining the liquidation cost of an order
under extreme market conditions such as increased volatility, decrease vol-
ume, or in a situation where the fundamentals have fallen apart. Portfolio
managers can perform liquidity analysis to understand if these costs are
too high, and if so, managers can reduce the position size of the order so
that the extreme market condition cost scenario will be in line with the liqui-
dation cost constraint of the fund.

Portfolio managers perform proper liquidation cost analysis is to provide a
broker or third-party vendor with their entire holdings as well as the market
conditions that would trigger a liquidation for the order, or by perform liqui-
dation cost analysis on their own desktop without interacting with the broker.

A manager who is willing to provide a broker or third-party vendor with
their portfolio holdings as well as the market triggers that would result in
a sell or liquidation of the position are providing the market with valuable
information that could potentially allow a market participant to take advan-
tage of this information and earn a trading profit at the expense of the fund.
Portfolio managers need to perform liquidation cost analysis on their own
systems so that they can eliminate potential information leakage and so
that they can develop their own customized analysis specific for their port-
folio management needs.

Finally, managers have begun to incorporate TCA cost estimates into their
portfolio optimizers to fine tune the optimization process and determine
more appropriate portfolio sizes based on their specific investment objec-
tives. TCA cost estimates and market impact models provide the necessary
input for these portfolio optimization models. These techniques for
improving portfolio performing by incorporating TCA into portfolio opti-
mizers were discussed in the chapter on Portfolio Optimization with TCA
and the chapter on Quantitative Analysis with TCA.

Intraday Analysis. Intraday analysis assists investor evaluate the realized
trading costs based on actual market conditions, volumes, and volatility.
Intraday analysis serves as the basis to determine how best to take advantage
of changing market conditions. For example, if the price of a buy order is
lower and there is more market volume should the algorithm execute faster
or slower? If the fund is purchasing the shares because they feel the stock is
undervalued it might be appropriate to trade faster and take advantage of the
lower prices and increased volume. However, if the order is part of a basket
trade and the order is helping to hedge the risk of the basket it might be most
appropriate continue trading in the same manner without making any
changes to the strategy to best manager overall portfolio risk. Finally, if
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the fund research department found that the stock exhibits momentum and
they expect the downward trend to continue, it might be best to decrease
the trading rate and trade slower to take advantage of expected better prices
likely to occur toward the end of the day. Intraday analysis provides the
analytical framework for investors make their microlevel algorithmic trading
decisions.

Posttrade Analysis. Posttrade analysis is the process of measuring trading
costs and evaluating broker and algorithm trading performance. Post trade
analysis serves as a broker report card and provides a measure of how
well the broker performed based on expectations. In performing posttrade
analysis, it is extremely important to ensure that brokers are being compared
to an independent and objective cost benchmark to assess performance. In
many market situations, brokers advocate to self-measure their own perfor-
mance. It is important to note here, that it is never in the fund’s best interest
to allow any third party or broker to self-evaluate their performance. Inves-
tors are always best served if they review performance compared to an inde-
pendent and objective cost estimate.

Funds are best served by performing posttrade analysis across all their bro-
kers on their own desktop using an independent and objective pretrade
benchmark, or by utilizing the services of a third-party TCA consulting
firm who uses an independent, transparent, and objective TCA cost bench-
mark. In situations where fund use a TCA consulting firm, it is extremely
important that they fund can verify the calculations used to derive the pre-
trade performance benchmark.

TRANSACTION COST MODEL
The TCA functions that have been integrated into several software packages
including MATLAB, Python, Excel Add-In, C/Cþþ, Java, .NET, Hadoop,
Generic COM, Standalone EXE, and Standalone App. A full description of
these TCA functions, the TCA library, and the software applications is pro-
vided in Chapter 21.

These calculations are based on the IStar Model discussed throughout this
text.

Market impact

I� ¼ a1$Size
a2$sa3$Pricea5

MI ¼ b1 $I
�$POVa4 þ ð1� b1Þ$I�
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Timing risk

TR ¼ s$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
250

$
1
3
$Size$

ð1� POVÞ
POV

r

$104

Price appreciation

PA ¼ 1
2
$Alpha$Trade Time

Liquidity factor

LF ¼ a1 $

�

1
ADV

�a2

$sa3$

�

1
Price

�a2

$Pricea5

TCA optimization

Min : ðMIþPAÞþ l$TR

Parameters available from Kissell research group

a1; a2; a3; a4; a5; b1

Variables

I� ¼ IStar Impact Model

MI ¼ Market Impact Cost

TR ¼ Timing Risk

PA ¼ Price Appreciation Cost

LF ¼ Liquidity Factor

Shares ¼ Shares to Trade

ADV ¼ Average Daily Volume

s ¼ stock annualized volatility

POV ¼ trade rate expressed as percentage of volume

TradeTime ¼ time to complete the order; expressed in volume time

Variable relationships

Size ¼ Shares

ADV

POV ¼ Shares

Sharesþ Trade Time � ADV
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Trade Time ¼ Size$
ð1� POVÞ

POV

MATLAB FUNCTIONS
All MATLAB functions used in TCA are included in the Trading Toolbox
(see www.Mathworks.com). These functions include TCA and other related
Trade Cost Estimation features, Portfolio Optimization, Trade Schedule
Optimization, Back-Testing and Sensitivity Analysis, Basket Pretrade and
Principal Bid Evaluation, Posttrade Analysis, and more.

The MATLAB functions we provide examples of in this article include:
market impact, timing risk, price appreciation, cost curve construction, opti-
mization, and posttrade evaluation. Some of these MATLAB functions
include:

iStar ¼ iStar()
mi ¼ marketImpact()
tr ¼ timingRisk()
lf ¼ liquidityFactor()
pa ¼ priceAppreciation()
cc ¼ costCurves()
fun ¼ @(x)krgSingleStockOptimizer()
[SSData.POV,w] ¼ fminbnd();

The process to perform TCA analysis in MATLAB consists of loading the
MI parameters (see www.KissellResearch.com for additional information)
and setting up the MATLAB workspace environment.

EXCEL AND PYTHON FUNCTIONS
Some of the TCA functions part of the TCA library include:

krgIStar ¼ iStar()
krgMI() ¼ marketImpact()
krgTR ¼ timingRisk()
krgLF ¼ liquidityFactor()
krgPA ¼ priceAppreciation()
krgTCACost ¼ tcaCost()
krgTCABenchmark ¼ tcaBenchmark()
krgValueAdd ¼ tcaValueAdd()
krgRPM ¼ tcaRPM()

Excel and Python Functions 549

http://www.Mathworks.com
http://www.KissellResearch.com


TCA REPORT EXAMPLES
In this section we provide insight into different TCA reports that can be
generated by funds on their own desktop using the calculations, models,
and methods presented in this text. These include:

n Market Impact Cost Summary
n Single Stock Market Impact Analysis
n Cost Curves
n Pretrade of Pretraders
n Posttrade Analysis Summary

Please note that this is just a sample of the TCA reports that can be gener-
ated via techniques in this text. Analysis can additionally develop and
customize more advanced analytics and summary reports including algo-
rithm portfolio optimization, portfolio analysis reports, and liquidation
cost analysis reports.

Market Impact Cost Summary. Fig. 20.1 provides the layout for a market
impact cost summary report. This report provides traders with the estimated
trading costs for various strategies measured in groups of Optimal Strategies,
Percentage of Volume (POV) strategies, and Volume Weighted Average
Price (VWAP) strategies, e.g., trading time. The report provides an example
of cost estimates for a buy order of 8% ADV or 400,000 shares of RLK. This
report provides a snap-shot summary of expected market impact cost and

n FIGURE 20.1 TradeMetrics - Trade Algorithm: Market Impact Cost Cummary.
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timing risk for different strategies. Notice for each group of strategies how
market impact cost increases with more urgent trading and how timing
risk decreases with more urgent trading.

Single StockMarket Impact Analysis. Figs. 20.2e20.4 provides the layout
for a single stock market impact analysis that can be developed and custom-
ized using our TCA models and techniques. Fig. 20.2 provides a data entry
screen where users can enter their Symbol, Order Quantity, and Trade Strat-
egy. This report allows users to enter trade quantity in terms of %ADV or
Share Quantity. The trade strategy can be entered as POV, VWAP, or
Optimal Strategy. This illustration provides the results of a buy order of
8% ADV or 400,000 shares of RLK for a normal level of risk aversion.
This strategy has an expected market impact cost of 15.4 bp and timing
risk of 46.5 bp. Users can vary the order size, stock, and strategy and easily
perform detailed TCA analysis. Additionally, since this analysis is being per-
formed on the investor desktop, they can enter any alpha expectations into
the analysis without the worry that outside market participant will learn of
their proprietary view and may compromise their competitive advantage.

TradeMetrics

Single Stock Market Impact Analysis
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n FIGURE 20.2 TradeMetrics - Single Stock Market Impact Analysis.
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The summary provides two trade cost graphs to help with the analysis. The
Trade Cost Distribution graph shows the complete range of expected
trading cost for this order. Notice that trading costs follow a normal distri-
bution with mean of 15.4 bp and standard deviation of 46.5 bp. Trading
costs have slightly fatter tails than a normal distribution and more peaked
means like distribution of price returns. But a normal curve provides impor-
tant insight. The second graph is the Cumulative Trade Cost Distribution
graph and this graph provides users with the probability that a given trade
will be less than a specified cost. Notice that this graph shows that there is
a 50% probability of performing better than 15.4 bp and 50% probability
of performing worse than 15.4 bp. This will always be the case for the

Optimization - Trading Days

Optimization Analysis

Optimization - POV Rate

Market Impact as a function of Time Optimization - POV Rate
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n FIGURE 20.3 TradeMetrics - Optimization Analysis (A) Optimization-Trading Days; (B) Optimization
POV Rate; (C) Market Impact as a Function of Time; (D) Market Impact as a Function of POV Rate.
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(B) Market Impact as a Function of Volatility.
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expected cost. The cumulative cost distribution graph is often used to
compare a principal bid to an agency execution. For example, if an investor
receives a principal bid of 25 bp we use the cumulative trade cost distribu-
tion and find that there is a 60% probability that the agency execution will
incur a lower cost than the principal bid. If the investor is trading frequently
enough such as daily, weekly, or monthly, they may elect to transact via an
agency execution because they will have sufficient opportunity for any large
cost trade to be offset by a low cost or savings trade. However, if the investor
is only going to trade once per year (which is often the case with some index
rebalancings) the 60% probability may not be high enough to warrant an
agency trade because there will not be sufficient opportunity for a high
cost trade to be offset by lower cost trade(s). In this case of a single trade
over the year, the investor is more likely best served by a principal bid trans-
action. Investors need to incorporate their trading frequency, along with the
expected cost and risk of the trade, when selecting between an agency execu-
tion and principal bid. The cumulative trade cost distribution graph provides
important information to help make a proper trading decision.

Fig. 20.3 illustrates the optimization process to solve the Trader’s dilemma
and how to find the tradeoff between market impact cost and timing risk.
This figure shows the solution to the optimization for the order entered by
the investor in terms of trade time and percentage of volume. This figure
also illustrates how trading costs for this order will change based on different
strategies such as changing execution time and changing percentage of vol-
ume rates. Fig. 20.4 provides sensitivity analysis for the investor and pro-
vides trade cost insight into how market impact cost will change based on
different order sizes measured in terms of %ADV and how market impact
cost will change based on changing market volatility.

Cost Curves. Fig. 20.5 illustrates a cost curve analysis that can be used by
portfolio managers to help determine the appropriate order size to hold in
their portfolio. This figure shows the expected market impact cost for
different order sizes (rows) defined in terms of %Adv and for different
trading strategies (columns) defined in terms of POV and trade time
(VWAP time). For example, for an order of 10% ADV executed via a
POV ¼ 20% strategy, the expected market impact cost of 25 bp. Portfolio
managers utilize cost curves to determine how many shares they can pur-
chase within their price level at a specified execution strategy. Portfolio man-
agers who make proper use of cost curves can reduce the opportunity cost of
the trade, and in return, increase portfolio performance.
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Broker Pretrade Estimates. Fig. 20.6 illustrates a layout for a broker pre-
trade report that consist of market impact estimates across a range of
different brokers. Traditionally, the only way for investor to ascertain market
impact estimates from multiple brokers was to contact each broker individ-
ually and request a pretrade cost estimate for a single block order or for a
basket. However, in our chapter on Advanced Algorithmic Modeling Tech-
nique and in our chapter on Decoding and Reverse Engineering Broker
Models we provided an approach to decode broker pretrade models and
devise a customized IStar model for each broker. Empirical evidence shows
that our decoding approach can fit many of the broker and third-party vendor
models with accuracy of R2 > 0:80. This allows investors to collect a sum-
mary of broker market impact estimates for a specified order without having
to contact each broker individually. Fig. 20.6 shows estimated broker market
impact estimates for an order for 13 brokers. In many situations, investors
can use the average or median cost across all brokers as the pretrade cost esti-
mation, and for the pretrade benchmark cost used in the posttrade analysis.

n FIGURE 20.5 TradeMetrics - Single Stock Cost Curves.
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Post Trade Analysis. Fig. 20.7 illustrates a sample posttrade analysis for an
investor over the historical period of 1Q-2019. This report provides different
cost summaries. The first summary provides insight into number of orders,
shares traded, dollar value, average trade, volatility, and POV strategy.
The report also provides a decomposition of implementation shortfall into
the delay, execution, and opportunity cost components. The report also in-
cludes a benchmark analysis including the actual trade cost, estimated trade
cost, VWAP performance, comparison to open and closing price on the day,
a market adjusted cost, and the pretrade benchmark (adjusted for actual
market conditions over the trading period). The last section provides the
value-add measure calculated as estimated cost minus actual cost. A positive
value-add indicates the trade was executed more favorably than expected
(e.g., at better prices) and a negative value-add indicates the trade was
executed less favorably than expected (e.g., at less favorable prices). The
z-score estimate provides a normalized value-add measure for the risk of
the trade. We expect to have approximately 67% of all trades executed
with a z-score between �1 and þ1, and approximately 95% of all trades

TradeMetrics

Broker Pre-Trade Estimates

Trading Cost Estimates

40.0
35.0

25.0

15.0

5.0
0.0

30.0

20.0

10.0 7.9 11.5 13.9 15.6 17.4 20.4 21.5 23.0 24.4
28.9 30.8

35.2
37.8

Brok
er-

13

Brok
er-

11

Brok
er-

8

Brok
er-

12

Brok
er-

5

Brok
er-

10

Brok
er-

4

Brok
er-

6

Brok
er-

3

Brok
er-

7

Brok
er-

2

Brok
er-

1

Brok
er-

9

n FIGURE 20.6 TradeMetrics - Broker Pre-Trade Estimates.
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TradeMetrics - Post Trade Analysis

Graphical Summary

User Selection Criteria
* *
* *
* *
* *

Order Summary Trade Characteristics Cost Summary cps bp Value-Add
Orders: 4.3% 27.1 55.6 Dollars:
Traded Value: 37% 14.8 30.4 cps:
Shares: 10% 15.1 30.9 bp: 0.5

$16,888,192,884 Volatility: Arrival Cost: $51,311,817 0.25
10,107 Size (%ADV): Impl. Shortfall: $93,931,284

346,205,565 POV Rate: Est. Cost: $52,189,210

$877,393

Region: US
Algorithm: Exec Type: Mkt Momen: * Side: *

Trader: POV Rate: Stk Momen: * Minutes: 5

Dollars

Start Date: 1/1/2019
Manager: Volatility: Market Cap: * Min Value: 1 End Date: 12/31/2019

Broker: Order Size: Sector: * Min Shares: 1,000

n FIGURE 20.7 TradeMetrics - Post Trade Analysis.
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1

1 12/31/2019
* Stk Momen: * Min. Qty: 1,000 Region: US
* Mkt Momen * Min. Value:

Units: bp 1/1/2019
* Market Cap: * Min. Time: 5 Mkt Cost Adj:
* Sector: * Side: *

TradeMetrics - Post Trade Analysis

Transaction Cost Analysis - Summary

User Selected Filtering Criteria
Broker: Order Size: Start Dt:

Manager: Volatility: End Dt:
Trader: POV Rate:

Algorithm: Exec Type:

Total 10,107 346,205,565 $16,888,192,884 100% 4% 37% 10% -8.6 -15.8 -30.4 -0.8 -55.6 -30.4 -30.4 -46.2 3.7 -1.6 -30.4 -30.9 0.5 0.3

Side
Buy 4,657 155,266,863 $7,745,136,051 46% 4% 37% 10% -8.4 -11.9 -27.5 -0.3 -48.1 -27.5 -27.5 -39.4 7.0 -2.2 -27.5 -28.8 1.3 0.5
Sell 5,450 190,938,702 $9,143,056,834 54% 5% 38% 9% -8.7 -19.1 -32.8 -1.2 -61.9 -32.8 -32.8 -51.9 1.0 -1.2 -32.8 -32.6 -0.1 0.0

Order Size
Small 8,973 223,959,944 $12,315,787,270 73% 2% 38% 7% -7.8 -15.9 -23.0 -0.6 -47.2 -23.0 -23.0 -38.8 2.9 -1.7 -23.0 -19.9 -3.0 -1.7
Medium 1,037 105,390,235 $4,107,718,759 24% 9% 36% 16% -10.3 -16.1 -48.2 -1.9 -76.5 -48.2 -48.2 -64.3 5.7 -1.3 -48.2 -55.6 7.4 1.4
Large 97 16,855,386 $464,686,856 3% 30% 37% 24% -12.7 -12.7 -68.2 1.6 -92.0 -68.2 -68.2 -80.9 9.4 -3.7 -68.2 -102.2 34.0 1.9

Market Capitalization
LC 6,868 201,151,239 $13,412,934,949 79% 3% 35% 8% -6.9 -14.0 -24.6 -0.2 -45.6 -24.6 -24.6 -38.5 3.3 -1.1 -24.6 -23.0 -1.6 -0.7
MC 1,990 78,437,338 $2,393,673,226 14% 8% 41% 14% -12.8 -6.0 -51.4 -4.5 -74.7 -51.4 -51.4 -57.4 11.5 -3.4 -51.4 -58.7 7.3 1.9
SC 1,249 66,616,988 $1,081,584,709 6% 10% 53% 16% -20.4 -60.9 -55.5 -0.5 -137.2 -55.5 -55.5 -116.4 -8.7 -4.1 -55.5 -66.8 11.3 2.3

Trade Urgency (POV Rate)
Passive 8,242 218,362,192 $11,905,672,950 70% 2% 38% 3% -7.9 -23.7 -28.9 -0.7 -61.3 -28.9 -28.9 -52.7 6.0 -1.4 -28.9 -21.0 -7.9 -4.1
Normal 1,017 68,921,411 $2,850,832,222 17% 8% 37% 14% -9.8 -6.4 -36.7 -1.7 -54.6 -36.7 -36.7 -43.1 1.3 -3.1 -36.7 -43.4 6.8 1.2
Aggressive 848 58,921,962 $2,131,687,713 13% 10% 36% 37% -10.7 15.7 -30.0 -0.1 -25.2 -30.0 -30.0 -14.3 -5.7 -1.3 -30.0 -69.2 39.2 6.6

Execution Type
Algo 4,872 206,827,322 $10,214,303,251 61% 5% 37% 10% -8.5 -18.5 -31.5 0.1 -58.3 -31.5 -31.5 -50.0 3.9 -2.0 -31.5 -30.1 -1.4 -0.6
High-Touch 5,235 139,378,243 $6,673,889,634 39% 4% 38% 9% -8.7 -11.8 -28.6 -2.2 -51.4 -28.6 -28.6 -40.4 3.5 -1.1 -28.6 -32.1 3.4 1.4

Brokers
Broker 1 800 28,143,911 $1,354,204,912 8% 4% 36% 11% -8.7 -14.1 -29.5 -1.0 -53.3 -29.5 -29.5 -43.6 0.5 -2.3 -29.5 -21.3 -8.2 -1.3
Broker 2 782 23,121,813 $1,275,115,765 8% 4% 37% 9% -7.8 -31.3 -30.3 2.0 -67.4 -30.3 -30.3 -61.6 2.4 0.0 -30.3 -30.3 0.0 0.0
Broker 3 769 26,401,223 $1,290,978,544 8% 4% 36% 11% -8.5 -27.5 -32.0 -0.9 -69.0 -32.0 -32.0 -59.6 -3.6 -3.2 -32.0 -28.6 -3.4 -0.5
Broker 4 782 26,339,602 $1,263,679,905 7% 4% 39% 9% -8.7 -16.4 -17.0 -0.4 -42.5 -17.0 -17.0 -33.4 -14.3 -2.8 -17.0 -20.4 3.4 0.5
Broker 5 776 25,736,390 $1,268,315,978 8% 4% 38% 10% -8.8 -13.0 -37.3 -4.1 -63.2 -37.3 -37.3 -50.3 15.4 -2.5 -37.3 -32.0 -5.3 -0.9
Broker 6 782 28,313,611 $1,351,862,282 8% 4% 37% 9% -8.5 -1.4 -36.8 -0.8 -47.5 -36.8 -36.8 -38.2 5.0 -1.5 -36.8 -37.2 0.4 0.1
Broker 7 772 28,240,665 $1,300,417,181 8% 4% 38% 9% -8.8 -23.7 -23.1 0.9 -54.7 -23.1 -23.1 -46.8 2.7 -0.9 -23.1 -30.9 7.8 1.3
Broker 8 772 25,672,583 $1,218,981,703 7% 4% 38% 10% -8.9 -3.5 -19.7 -6.8 -38.9 -19.7 -19.7 -23.2 15.4 -1.0 -19.7 -23.8 4.1 0.7
Broker 9 810 28,961,583 $1,357,053,899 8% 4% 38% 10% -8.9 -21.1 -26.0 -0.5 -56.5 -26.0 -26.0 -47.1 -5.7 -1.2 -26.0 -30.3 4.3 0.7
Broker 10 760 27,326,378 $1,286,236,848 8% 6% 37% 10% -8.9 -7.6 -41.6 1.6 -56.5 -41.6 -41.6 -49.2 6.8 -0.3 -41.6 -38.1 -3.4 -0.5
Broker 11 760 23,730,744 $1,259,321,453 7% 5% 38% 10% -8.0 3.6 -34.8 -1.5 -40.7 -34.8 -34.8 -31.2 18.6 -1.0 -34.8 -41.0 6.2 1.0
Broker 12 775 29,501,264 $1,409,610,083 8% 5% 37% 10% -8.5 -42.8 -38.4 -0.5 -90.2 -38.4 -38.4 -81.2 -1.3 -4.1 -38.4 -34.8 -3.6 -0.6
Broker 13 767 24,715,798 $1,252,414,331 7% 4% 36% 9% -8.4 -3.6 -26.8 1.0 -37.8 -26.8 -26.8 -30.4 8.4 -0.1 -26.8 -32.3 5.5 0.9

*
*

*
*

Value-Add
Order Characteristics Implementation Shortfall Benchmark Performance Broker Value-Add

Category Count Shares Value Wgt Size Stdev POV Fixed Delay Trading OC IS Arrival Mkt Adj Open Close VWAP Arrival Est. Cost Z-Score
$ % % % % (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp)

n FIGURE 20.7 Continued
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executed with a z-score between�2 andþ2. Brokers who have a higher per-
centage of orders less than these statistical percentages are likely to be under-
performing expectations. This report further provides these cost summaries
for different categories of trades including: all orders, orders by side, orders
by market movement category, orders by stock momentum category, algo-
rithm orders and nonalgorithm orders, sector, and by actual broker (not
shown in the figure).

CONCLUSION
This chapter provides insight into how TCA can be used by brokers, traders,
portfolio managers, and compliance managers throughout the different
phases of the investment cycle. The most important aspect of TCA analysis
from the perspective of the investor is to be able to perform TCA analysis
on their own desktop. Investors who perform TCA analysis by connecting
to a broker or third-party sever may subject their trade to potential informa-
tion leakage where the market may learn of a forthcoming trade and or be
able to reverse engineer the stock selection process used by the portfolio
manager. This would allow these outside parties to potentially earn a profit
at the expense of the fund.

Techniques and models introduced in this text show how investors can
create their own TCA analytical trading tools to perform full analysis and
allow traders and portfolio managers to make more efficient investment
and trading decisions. Investors can follow the summary TCA report layout
in this chapter or use the techniques in the book to develop customized re-
ports for the fund. All of which will help improve the overall performance
of the fund.
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Chapter21
Transaction Cost Analysis (TCA) Library

INTRODUCTION
This chapter provides the necessary insight into best-in-class practices used
to build and develop a customized suite of transaction cost analysis tools
using the Kissell Research TCA library. The transaction cost analysis
(TCA) library is available for different software packages including
MATLAB, Python, Excel, C/Cþþ, Java, .NET, and Hadoop. The package
is also available as a Generic COM Component and as a standalone EXE
file.

These functions are beneficial for portfolio management and TCA, and were
built using the formulas and mathematical framework presented in the pre-
ceding chapters. The most important reason for any firm to have a TCA
function library is that it allows firms to develop customized analytics
that can be easily combined with their own proprietary forecasting and
alpha generating models, and integrated into their own customized invest-
ment decision-making processes.

These TCA libraries help investors bridge the gap between portfolio man-
agement and trade execution. Investors no longer need to access broker-
dealer and third-party APIs and/or webservers. Most importantly, these
TCA tools provide investors with opportunity to incorporate their own pro-
prietary research and market views directly into their own quantitative
models, thus, eliminating the potential for information leakage, and ulti-
mately, leading to increased portfolio performance.

These library functions provide investors with the necessary suite of analyt-
ical functions to perform research related to global TCA, portfolio manage-
ment, investment research, portfolio and trade schedule optimization,
market microstructure research, and alpha capture analyses. It also provides
the foundation to develop a real-time algorithmic decision-making frame-
work based on the investment objective of the fund. These library functions
include a full collection of functions to perform various analyses including:
pre-trade analysis, post-trade analysis, cost curve derivation, liquidation

Algorithmic Trading Methods, Second Edition. https://doi.org/10.1016/B978-0-12-815630-8.00021-1
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cost analysis, and single stock optimization, and multiperiod trade schedule
optimization.

The TCA library package can be downloaded from www.KissellResearch.
com.

TCA Library
KRG Models can be incorporated into Client Models, Analyses, and
Trading Systems. We provide TCA libraries for the following:

n MATLAB
n Python
n Excel Add-Ins
n C/Cþþ
n Java
n .NET
n Hadoop
n Generic COM Components
n Standalone EXE files

The TCA library is an essential trading tool for:

n Traders: Traders utilize the TCA library to develop customized trading
analytics and perform transaction cost analysis, pretrade cost estimation,
trade strategy evaluation, and posttrade measurement right on their own
desktop. These analytics assist traders develop appropriate algorithmic
decision-making rules that are consistent with the investment objective
of the fund. These libraries have been developed to so that funds can es-
timate market impact and trading costs, perform optimization, and deter-
mine which brokers and which algorithms perform best under different
types of market conditions. Since these analytics are developed by the
investors, they can independently rank brokers based on trading perfor-
mance and the value-added to their fund.

n Portfolio Managers: Portfolio managers utilize the TCA library to
develop alpha capture models and proprietary MI factor scores that
can be integrated into stock selection models, portfolio construction pro-
cess, as well as optimization. Managers use these tools to evaluate the
global trading cost environment, market impact, and its implications
on portfolio returns. These TCA library functions allow analysts to con-
structed long-term global cost indexes which can be used to back-test in-
vestment ideas and trading strategies, and perform portfolio
optimization. Portfolio managers also use the functions to develop
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advanced liquidation cost analyses that not only estimate the current cost
of the trade list but evaluate the expected trading costs that may arise un-
der extreme market conditions such as decreased liquidity, spiking vola-
tility, and adverse price momentum. These analytics ensure managers
have the necessary information on hand to perform analyses that will
enable funds to achieve their maximum level of returns.

n Compliance Officers: Compliance officers utilize the TCA library to
develop trade reports to ensure that brokers are meeting their best execu-
tion obligation to the fund. These reports monitor broker performing dur-
ing ensure brokers are adhering to properly specified trading rules and
guidelines, and if not, they provide investors with insight into how
best to revise trading rules and change algorithms given the real-time
market conditions. These reports can also serve as a report card of trade
execution quality for the broker after trading has completed, and to help
adhere to ever changing regulatory requirements.

n Quantitative Analysts: Quantitative analysts utilize the TCA library to
develop advanced proprietary financial models to assist in the stock se-
lection and investment decision process. Most importantly, these ana-
lyses can be run on the investors own desktop which preserves
information leakage that may be associated with accessing information
on a third-party website or API. These TCA research models can be in-
tegrated directly into proprietary optimizers, alpha stock selection
models, and trading systems to maximize opportunity to achieve their
trading and investment objections. These TCA libraries can help funds
manage trading costs through all phases of the investment process.

n Corporations: Corporations use these TCA library functions to evaluate
company stock price movement and trading behavior in their stock. Cor-
porations can develop analytics to help uncover possible high frequency
trading in their stock and its overall consequence on the long-term
growth potential of stock price. The library functions also provide the
necessary analytics needed to develop appropriate buy-back programs,
as well as to evaluate the buying/selling pressure on the price of the stock
due to outside market participants.

TRANSACTION COST ANALYSIS USING THE TCA
LIBRARY
Our TCA library provides the necessary information to develop and build
the following analytics and research products:
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Pretrade Analysis: Develop pretrade models to estimate trading costs and
evaluate different trading strategies. This includes estimating market impact,
price appreciation, and timing risk. Traders can evaluate different trading
strategies and algorithms by incorporating their own market views and pro-
prietary alpha forecasts directly into these pretrade models. Traders use these
functions to perform single stock and portfolio multi-period trade schedule
optimization. This allows traders to select the most appropriate strategy to
balance the tradeoff between cost and risk, and based on the underlying in-
vestment objectives of the fund.

n Pretrade market impact parameters are available across global regions
(North America, Europe, Asia, Latin America, as well as Emerging
and Frontier Markets). See www.KissellResearch.com for information
on receiving the parameters.

Intraday Analyses: Develop real-time analytics to monitor transaction
costs. These models provide investors with point in time trading costs esti-
mates (for executed shares) and the projected trading costs that will result
from completing the order (for those shares that still need to be executed).
This is accomplished by incorporating market momentum and actual market
conditions (volume, volatility, and aggregated imbalances) directly into the
analysis. Intraday trade cost analysis will provide investors with the neces-
sary information to determine when and how to take advantage of market
conditions and favorable opportunities exist.

Posttrade Analysis: Perform posttrade analysis. Analysts use the TCA li-
brary to calculate costs and evaluate performance across various benchmarks
(Arrival, Open, VWAP, Close, T-1, and Tþ1) as well as compare actual
costs to a pretrade trading cost estimate calculated using the I-Star market
impact model. This allows funds to determine how well their brokers and al-
gorithms performed given actual market conditions. Investors can rank their
brokers and their algorithms to determine which brokers and algorithms are
adding value to the fund, and determine which algorithms and which brokers
may be underperforming expectations and causing the fund to incur unnec-
essary higher trading costs. Investors can compute the RPM of the trade and
determine which brokers are adding value to the trading process and which
brokers are causing funds to incur unnecessary trading costs. Customized
posttrade reports provide clients with the ability to sort, filter, and evaluate
different trading situations right on their own desktop.
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Back-Testing: Develop historical trading cost indexes to assist portfolio
managers back-test investment ideas. These indexes can estimate the cost
that investors would have incurred historically based on today’s market envi-
ronment, e.g., decimalization, electronic, algorithms, dark pools, internal
crossing, ATS, etc., rather than solely based on the market environment at
that point in time. Thus, providing a much more realistic trade cost and
back-testing environment. The back-testing index trading cost series can
be generated for a constant order size (% Adv), share quantity, or dollar
value. Additionally, the back-testing series can also be customized by mar-
ket, investment style, stock specific, or any investment objective. A custom-
ized back-testing environment can be integrated into portfolio construction,
liquidity analysis, optimization, and for stress-testing portfolios.

n See www.KissellResearch for a historical TCA database from 1993 to
present.

High Frequency Trading (HFT): High frequency traders can develop
customized models and calculate essential trading cost data using the TCA
library. This information can be directly integrated into their own proprietary
models (running on their own desktops) and into their own in-house trading
systems and applications. HFT firms can use the TCA library functions to
help uncover hidden trading patterns and price movement in the stock due
to investor buying and/or selling pressure. Ultimately, assisting investors
to uncover profiting trading opportunities.

Limit Order Modeling (LOM): The TCA library allows traders to develop
limit order models (LOM) to calculate the probability of executing at spec-
ified prices or better. This provides insight into whether an order should be
placed passively using limit orders (bids and asks) or traded aggressively us-
ing market orders. These analyses can be performed on the client’s own
desktop and can be customized for the investors actual trading needs. For
example, analytics can be developed using the TCA library to provide inves-
tors with a vector of orders including quantities prices, and corresponding
probability of achieving a fill. These can be calculated by using actual mar-
ket conditions and trading costs that are calculated based on the overall
buying and selling pressure of all market participants, and just as impor-
tantly, based on the investor’s total order size and unexecuted shares. This
includes the shares that have not yet been displayed to the market or dissem-
inated to a broker or broker system for execution. Thus, allowing the inves-
tor’s investment objectives to remain private. The TCA library helps
investors perform advanced LOM analysis.

Transaction Cost Analysis Using the TCA Library 563

http://www.KissellResearch


Smart Order Routing (SOR): The TCA library allows traders to develop
smart order routing models (SOR) to improve overall trading performance
and reduce trading costs. These analytics assist investors evaluate expected
transaction costs across different trading venues based on market volumes,
price momentum, and turnover at each location. This provides investors
with the trading venue that will maximize the likelihood of achieving a fill
at the investor’s desired price or better. It also provides whether the order
should be routed to an exchange, to a displayed venue, or to a dark pool.
The TCA library helps investors perform advanced SOR analysis.

Cost Curves: Cost curves are used by portfolio managers as part of portfolio
construction and the investment decision process. Managers can utilize the
TCA library to develop analytics to compute the trading cost for a various
order sizes (such as %Adv, share quantity, dollar value) and by trading stra-
tegies such as VWAP, a specified percentage of volume (POV rate), or trade
time. These data can be incorporated into proprietary stock selection models,
quantitative screens, and optimization models. The TCA library allows these
estimates to be calculated on your own desktop and ensures the preservation
of valuable investment research.

Liquidation Cost Analysis: Portfolio managers and compliance officers can
utilize the TCA library to perform analysis on the portfolio to understand the
cost and risk of liquidating orders. The TCA library allows investors to
stress-testing portfolios under extreme market conditions, decreased
liquidity, spiking volatility, and failing company fiscal health. These ana-
lyses provide investors with insight into the potential consequences on the
portfolio resulting from dire market conditions and an unfavorable economy.
Investors can develop customized models and analytics to ensure adherence
to increasing and stringent regulatory liquidity requirements.

Optimization: Portfolio managers use the TCA libraries to develop custom-
ized optimization models and alpha forecasts. These can then be incorpo-
rated directly into proprietary investment decision processes. These
include portfolio optimization, stock selection, portfolio management, alpha
generation, and trade schedule optimization. It also provides investors with
ability to perform liquidation optimization to determine the most appropriate
orders and shares to sell from a portfolio in times of cash redemption needs.

Research: Analysts use the TCA library to develop customized and ongoing
research pertaining to global trading costsdby region and by country, and
research pertaining to market volumes, volatility, and correlation, and research
on the current market microstructure environment. In addition, analysts can
develop market research and commentary related to sector trading and invest-
ment styles, portfolio risk management, macro-economic trends, etc. The
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TCA library allows researchers to greatly enhanced thie productions using
real-time TCA functions.

Transition Management: Analysts can use the TCA library to develop a
portfolio management transition model to evaluate and analyze the best
way for a plan sponsor to transition from one portfolio (legacy) to a new
portfolio (target) given trading cost, risk, and tracking error constraints.
These analytics can be built to include risk analysis capabilities using a pro-
prietary risk model and with full trade schedule optimization capabilities.
These also include full broker and algorithm posttrade evaluation, and
insight into the most appropriate broker and/or algorithm to perform the
transition.

Corporate Buy-Back Model: Corporate analysts utilize the TCA library to
develop corporate buy-back models. This assists corporations (e.g., CEO,
CFO, Treasure, IRO, etc.) analyze how to best buy-back company stock
over a defined period (e.g., up to a year). These customized analysts help
evaluate tender prices and appropriate execution strategies considering
cash-flow, risk, and expected price appreciation. Analysts can also use these
customized models to evaluate similar companies and competitors.

List of TCA Functions
Below is a list of TCA functions contained in our TCA library (as of June
30, 2019) for different TCA categories. Please see table 21.1 and consult
www.KissellResearch.com for the most current updated list of TCA
functions.

Pretrade Analysis
n ¼ krgIstar()
n ¼ krgTempMI()
n ¼ krgPermMI()
n ¼ krgMI()
n ¼ krgTR()
n ¼ krgPA()
n ¼ krgLF()
n ¼ krgTotalTR()

Posttrade Analysis
n ¼ krgTCACost()
n ¼ krgZScore()
n ¼ krgValueAdd()
n ¼ krgRPM()

Transaction Cost Analysis Using the TCA Library 565

http://www.KissellResearch.com


Table 21.1 Kissell Research TCA Library Functions.

MATLAB Python
C/
CDD Java .NET Hadoop

Generic
COM

Standalone
EXE

Standalone
APP

Excel
add-
in

Pre-Trade Analysis:

¼ krgIstar() U U U U U U U U U U

¼ krgTempMI() U U U U U U U U U U

¼ krgPermMI() U U U U U U U U U U

¼ krgMI() U U U U U U U U U U

¼ krgTR() U U U U U U U U U U

¼ krgPA() U U U U U U U U U U

¼ krgLF() U U U U U U U U U U

¼ krgTotalTR() U U U U U U U U U U

Post-Trade Analysis:

¼ krgTCACost() U U U U U U U U U U

¼ krgZScore() U U U U U U U U U U

¼ krgValueAdd() U U U U U U U U U U

¼ krgRPM() U U U U U U U U U U

Portfolio Management

¼ krgCostCurves() U U U U U U U U U

¼ krg2Mdl() U U U U U U U U U

¼ krgRiskAnalysis() U U U U U U U U U

¼ krgBackTest() U U U U U U U U U

¼ krgImbal() U U U U U U U U U U

Optimization

¼ krgSSOpt() U U U U U U U U U U

¼ krgTradeScheduleOpt() U U U U U U U U U

¼ krgQPOpt() U U U U U U U U U

¼ krgTCAPortOpt () U U U U U U U U U

Calculations

¼ krgLinearRegression() U U U U U U U U U

¼ krgLogisticRegression() U U U U U U U U U

¼ krgPCA() U U U U U U U U U U

¼ krgEigen() U U U U U U U U U U

¼ krgSVD() U U U U U U U U U U

¼ krgCov U U U U U U U U U U

¼ krgApproxCov() U U U U U U U U U U

¼ krgVolumeProfile() U U U U U U U U U U

¼ krgUniformProfile() U U U U U U U U U U

¼ krgInitPOV() U U U U U U U U U U

¼ krgInitParam() U U U U U U U U U U

Conversions

¼ krgPOV2Time U U U U U U U U U U

¼ krgTime2POV U U U U U U U U U U
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Portfolio Management
n ¼ krgCostCurves()
n ¼ krg2Mdl()
n ¼ krgRiskAnalysis()
n ¼ krgBackTest()
n ¼ krgImbal()

Optimization
n ¼ krgSSOpt()
n ¼ krgTradeScheduleOpt
n ¼ krgQPOpt()
n ¼ krgTCAPortOpt ()

Calculations
n ¼ krgLinearRegression()
n ¼ krgLogisticRegression()
n ¼ krgPCA()
n ¼ krgEigen()
n ¼ krgSVD()
n ¼ krgCov
n ¼ krgApproxCov()
n ¼ krgVolumeProfile()
n ¼ krgUniformProfile()
n ¼ krgInitPOV()
n ¼ krgInitParam()

Conversions
n ¼ krgPOV2Time
n ¼ krgTime2POV(Table 21.1)
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Newton’s method, 525e526
NewtoneRaphson method. See

Newton’s method
NLP. See Nonlinear programming

(NLP)
NNET model approach. See Neural

network model approach (NNET
model approach)

No net investment, 50
No short sales, 355
Non-OLS. See Nonlinear least squares

techniques (Non-OLS)
Nonelectronic trading, 28
Nonlinear least squares regression tech-

niques, 255
Nonlinear least squares techniques

(Non-OLS), 198, 202, 204e205
error term, 204
loss functionesum of square errors, 205

minimize sum of, 205
Nonlinear model, 180, 201
Nonlinear model, 201
Nonlinear optimization

convergence, 523e527
examples, 526e527
Newton’s method, 525e526

formulation, 360
Nonlinear programming (NLP), 361
Nonlinear regression models, 197, 202.

See also Linear regression
models

estimating parameters, 202e204
evaluate model performance, 206
nonlinear formulation, 201e202
notes on sampling in, 218e219, 218f

results, 217t
sampling techniques, 207e208

Nonparametric tests, 85e86
Nonrandom sampling techniques, 208
Nontraditional data. See Traditional data
Nontransparent transaction costs. See

Hidden transaction costs
Normal distribution, 129

standard, 133t

O
Objective function difficulty, 357
OLS technique. See Ordinary least

squares technique (OLS
technique)

One-sided optimization problem, 354
Opportunity

cost, 62e63, 70e71
opportunity-related delay cost, 73

Optimal asset allocation problem,
449e450

Optimal portfolios, 437, 439
Optimal strategy, 440e441
Optimal Trading Strategies, 32, 78e79
Optimization, 445, 564, 567

analysis, 551, 552f
constraints, 430e431
formulation, 354e358

constraint description, 355e358
objective function difficulty, 357

objective function simplification, 358
solution time, 368t

Order
data, 247
priority, 46
types, 44

Ordinary least squares technique (OLS
technique), 157, 162, 173, 180

estimation techniques, 217
regression analysis, 289, 411e412, 419

“Out-of-sample” test, 236
Outcome

events, 224
states, 228
variable, 176

Outlier analysis, 278e280

P
Paired observation approach, 84e85
Paired samples, 86
Paper return, 68
Parameter estimation error, 380

Participation-weighted price (PWP), 75,
77e78

Passive algorithm, 4, 31
Passive fund, 9
Passive in-money (PIM), 338, 344e345
Passive manager, 9
Passive pool algorithms, 336
Passive strategy, 444
Path-dependent approach, 116
Payments, 14
PCA. See Principal component analysis

(PCA)
pdf. See Probability density function

(pdf)
Percentage of volume (POV), 77e78,

112e113, 124, 234, 301e302,
336, 375e377, 519, 523,
550e551

rate, 201e202, 249, 255, 407e408,
486

strategies, 32
to trade rate, comparison of, 378

Performance measure, 365
Permanent market impact, 100
PIM. See Passive in-money (PIM)
PIM tactics. See Project Information

Model tactics (PIM tactics)
Pinging, 52e53
Platykurtic distributions, 136
pmf. See Probability mass function

(pmf)
PnL. See Profit and loss (PnL)
Poisson distribution, 150
Polynomial regression model, 152, 152f,

171e172, 198e199
Portfolio, 11e12

algorithms. See Basketdalgorithms
attribution, 5
optimizers, 416e417
portfolio-trading desk. See Programd

trading desk
rebalance, 11
risk, 462
trade cost objective function, 394e395

Portfolio adaptation tactics, 368e374
AIM tactics, 368e371, 370f
PIM tactics, 368e371, 370f
reoptimization, 371e372

Portfolio construction, 5
existing models for, 472e475

current state of vendor market
impact models, 473e475
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Portfolio construction (Continued )
with transaction cost analysis, 429,

449e456
appropriate level of risk aversion,

447e448
best execution frontier, 448e449
cost-adjusted frontier, 445e447
example, 456e466
findings, 464e466
investment and trading theories,

441e445
portfolio management process,

437e439
in portfolio optimization and con-

straints, 430e436
portfolio optimization and stock

data, 457t
quest for best execution frontier,

451e456
trading decision process, 439e441

Portfolio management, 437e439,
484e487, 567

ETF with and without short positions,
437e438, 438f

maximizing investor utility, 438e439,
439f

Portfolio managers, 5e7, 9e10, 12e13,
57, 419, 421e423, 431,
473e474, 488, 495, 510, 544,
546, 560e561, 564

decision, 439
and traders, 406, 433

Portfolio optimization, 416e429,
449e450, 470

comparison of optimization techniques,
364e368, 366t

optimization solution time, 368t
solving portfolio objective problem,

365e368
and constraints, 430e433
deriving portfolio optimization market

impact models, 419e420
portfolio managers, 419
QP approach, 358e360
residual schedule exponential,

361e362
share quantity regression model,

420e424, 422te423t
trade schedule exponential, 360e361
trade value regression model, 425e428,

426te427t
trading rate parameter, 362e364

transaction costs in, 434e436
Portfolio risk management, 395e403

maximum trading opportunity,
398e399

minimum trading risk quantity, 397
program-block decomposition,

400e403
residual risk curve, 395e396
values, 400

Posttrade analysis, 49e50, 66, 97, 455,
547, 555e558, 562, 565

POV. See Percentage of volume (POV)
Power function, 176, 191f,

194f
grouped limit order data, 193t
limit order data, 187te189t
logistic regression summary results,

194t
model, 177, 412

Predictive analytics, 223e224
Predictive modeling. See Predictive

analytics
Pretrade

analysis, 49, 65, 545, 562, 565
benchmark, 80
cost calculations, 473
impact models, 473
market impact parameters, 562
of pretrade approach, 247, 406e416,

475e478, 513
applications, 476
examples, 476e478
I-star model approach, 407e413
NNET model approach, 413e416,

416f
Price

appreciation, 61, 353, 512, 548
discovery, 27
evolution, 512
price-based algorithms, 34e35
price-size priority, 46
price-time models, 46
return, 512
trajectory, 101e102
trend, 512
volatility, 379

Principal bid, 16e17, 19e20, 46e47
Principal component analysis (PCA),

295, 536. See also Transaction
cost analysis (TCA)

Principal trade. See Principal bid
Probability

in algorithmic trading, 129
distributions, 130e136

continuous, 132e135
descriptive statistics, 135e136
discrete, 131e132
functions, 136

Probability density function (pdf),
130e131

Probability mass function (pmf), 130
Probability models, 175, 186

comparison of linear regression model
to, 177, 178f

developing, 175e184
grouping data, 182
likelihood function based on actual

outcome results, 183e184
logit model, 178e179
outcome data, 180e182

mean, 182
model formulation, 182
variance, 182

power function model, 177
probit model, 179e180

comparison of, 181f, 191e194
solving binary output models, 182
solving probability output models,

184e185
examples, 186e190
power function, 191

specifying probability function,
182e183

Profit and loss (PnL), 67
algorithms, 24

Profit seeking algorithms, 3e4
Program, 11e12

program-block decomposition,
400e403, 402f

sales trader, 18e19
trading desk, 16e17

Project Information Model tactics (PIM
tactics), 368e371, 370f

PWP. See Participation-weighted price
(PWP)

Python functions, 549

Q
Quadratic programming (QP)

approach, 358e360
formulation, 350
subproblem, 523
trade schedule optimization technique,

372e373
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Quant trading/statistical arbitrage, 50, 52
Quantitative analysis with TCA.

See also Transaction cost anal-
ysis (TCA)

alpha capture program, 470, 512e518
backtesting, 470e471

strategies, 487e490
cost curves, 469e470
existing models for portfolio construc-

tion, 472e475
investment capacity, 470
liquidation cost, 471
market impact
factor scores, 469, 508e510
simulation, 490e494
multi-asset class investing, 495e498
multi-asset trading costs, 498e506
portfolio optimization, 470
pretrade of pretrades, 475e478
quantitative overlays, 469
sensitivity analysis, 471
trading costs, 478e487

Quantitative analysts, 18, 561
Quantitative asset managers (Asset

Mgmt-Quant), 30
Quantitative fund, 8
Quantitative managers, 8, 12, 488
Quantitative portfolio managers, 16e17,

437
Quantitative process, 429e430
Quantitative research, 15
Quest for best execution frontier,

451e456
return, 452e453
risk, 453e456

Quicker trading, 124

R
R2

goodness of fit, 159, 164
statistic, 169, 239

R2000 index, 407e408
Random forests, 228
Random sampling techniques, 208e209
Random variables, 129e130
Range, 273
RDV. See Remaining daily volume

(RDV)
Realized volatility, 269
Rebates, 60

rebate/liquidity trading, 50, 52e54
Redemption, 13

Registered investment advisors (RIAs),
28e29

Regression, 229e231
analysis, 151, 251, 529
based supervised learning, 225
fractional, 199
metrics, 154e156
linear, 198
log-linear, 200
logistic, 200e201
models, 177, 198e201
nonlinear, 201
polynomial, 198e199

Regression sum of squares (SSR), 155
Reinforcement learning, 223, 225
Relative performance measure (RPM),

75, 78e80
Remaining daily volume (RDV),

321e322
Research, 564e565

data of investment analysis, 15e16
function, 17e18

Research sales. See Equity sales
Residual risk curve, 395e396, 396f,

399f
Residual schedule, 355

exponential, 361e362, 522
Residual size bounds, 356
Residual trade schedule, 519
Retail investors, 28
Returns, 274, 452e453
Revenue pricing models, 45e46
Reverse engineering broker models,

405e406
portfolio optimization, 416e428
pre-trade of pre-trades, 406e416

RIAs. See Registered investment advi-
sors (RIAs)

Risk, 453e456
aversion, 365, 455

appropriate level of, 447e448
parameter, 33e34

factor, 292
hedging, 503
idiosyncratic risk component, 292
management, 13, 356e357, 431

trade, 13
market, 292
reduction, 13
stock specific, 292
systematic risk component, 292

Risk bid. See Principal bid

RMSE. See Root mean square error
(RMSE)

RMZSE. See Root mean Z-Score
squared error (RMZSE)

Robo” trading. See Algorithmic trading
Robo-investing, 223
Robotics, 223
Roll cost, 504e505
Root mean square error (RMSE),

278e279
Root mean Z-Score squared error

(RMZSE), 278e279
RPM. See Relative performance mea-

sure (RPM)

S
Sales function, 17e18
Sampling techniques, 207e208

random, 208e209
with replacement, 209
without replacement, 210

Scientific method, 233,
235e245

asking question, 235
communicating experimental results,

236e245
solution technique, 237e245

constructing hypothesis, 235e236
researching problem, 235
testing hypothesis, 236

Screening techniques, 484e487
Second wave of portfolio optimization,

434
Self-financing, 356
Sell-initiated trade, 246
Sell-side firms, 520
Semisupervised learning, 225,

528e529
Sensitivity analysis, 257e261, 349, 471,

545, 552f
Sequential quadratic programming, 523
Shadow liquidity, 503
Share quantity regression model,

420e424, 422te423t,
469e470

Sharpe ratio of trade, 447e448
Short trading horizons, 50
Short-term alpha, 10
Shrinking portfolio, 355
Side indicator function, 116
Side of imbalance, 253
Sign test, 86e87
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Simple linear regression models,
156e158. See also Multiple
linear regression models

example, 159e161
model parameters estimation, 157e158
model performance statistics

evaluation, 158
output, 161t
test for statistical significance of

factors, 159
Simple mean. See Arithmetic mean
Simply trading PnL. See Trading price

performance
Single factor regression model, 246
Single optimal trading strategy, 445
Single stock, 16

algorithms, 31
market impact

analysis, 551
simulation, 494, 494f

trade cost objective function, 393
Single-index model, 292e293
Size of imbalance, 254
Skewness, 136, 175, 221e222
Slicing strategy, 349
Small cap stocks, 38e39, 240, 308
Smart order router/routing (SOR),

20e21, 48e49, 54, 564
Solution technique, 237e245
SOR. See Smart order router/routing

(SOR)
SP500 index, 292, 407e408
Specified tolerance value, 523e524
Speculation, 503
Spreads, 60, 111, 241
SSE. See Error sum of squares (SSE)
SSR. See Regression sum of squares (SSR)
Standard deviation, 135, 221e222
Standard error of regression model,

159, 164
Standard normal distribution, 138
Starting solution, 524
Static trade schedule algorithm, 86
Static trading parameters, 84e85
Statistical/statistics

in algorithmic trading, 129
analysis, 262e265

error analysis, 262e265
factor models, 295e299

factor selection, 297e299
models, 52
tests, 95

Steepest descent, 523
Stepwise regression analysis, 536e538
Stock

stock-specific
error analysis, 265e267
risk, 111, 292

universe, 252
volatility, 249, 482

Stock-specific risk, 292
Structured data, 222e223
Student’s t-distribution, 139e140
Suboptimal Markowitzian portfolio, 448
Sum of squared X, 155
Sum of squared XY, 156
Sum of squared Y (SSY), 156
Supervised learning, 224e225,

528e529
Supplyedemand equilibrium, 102e105,

103f
Systematic risk component, 292

T
t-distribution. See Student’s

t-distribution
T-test, 159, 164e165
Tag-clouds, 221e222
Taker-maker pricing model, 45
Taxes, 59
TCA. See Trade cost analysis (TCA);

Transaction cost analysis (TCA)
Temporary decay formulation, 108
Temporary impact decay function,

105e107, 107t
Temporary market impact, 99e100

cost, 123
Third wave of portfolio optimization,

435e436
Third-party

consultants, 97
TCA systems, 544

TIC data. See Treasury international
capital data (TIC data)

Time period, 252
Time weighted average price algorithm

(TWAP algorithm), 32
Timing risk (TR), 62, 354, 379, 392,

439, 442e443, 454, 520, 548
for basket of stock, 387e388
equation, 382e388
expression, 363e364

Top down credit strategy approach, 14
Total sum of squares, 155

TR. See Timing risk (TR)
Trade, 6

cost distribution graph, 552e553
list, 11e13
rate, 234, 519, 534

bounds, 356
schedule, 32e33, 234, 356, 378

exponential, 360e361, 522
optimization process, 349, 447e448

size bounds, 356
strategy, 519
trajectory, 32e33
value regression model, 425e428,

426te427t
volume, 503

Trade cost analysis (TCA), 405e406
TradeMetrics

broker pretrade estimates, 555f
single stock

cost curves, 554f
market impact analysis, 551f

trade algorithm, 550e551, 550f
Traders, 25, 57, 544, 560

dilemma, 63, 351e352
objective function, 521e523
variables, 351e352

Trading
algorithm

classifications, 3e4
styles, 4

characteristics, 479t
decisions, 432

optimal strategy, 440e441
process, 439e441

desks, 16
floor function, 18e19
goals, 330e337

balance tradeoff between cost and
risk, 333

minimizing cost, 330
minimizing cost with risk constraint,

331
minimizing risk with cost constraint,

333
price improvement, 334

liquidity, 503
price performance, 75
rate, 377, 522

comparison of POV rate to, 378
variable, 377

rate parameter, 362e364
market impact expression, 363
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timing risk expression, 363e364
risk components, 379e380
stability, 111
strategy, 376e378, 378f

comparison of POV rate to trade
rate, 378

percentage of volume, 377
trade schedule, 378

time, 378e379
trading-related transaction costs, 63
venue classification

controversies, 43e44
dark pool, 42e43
displayed market, 42

venues charge, 60
Trading cost(s), 478e487

acquisition and liquidation costs,
481e484

effect, 452
equations, 375e376

model inputs, 376
portfolio management, 484e487
reformulating, 380e382

market impact expression, 380e382
standard error term, 67
trading cost/arrival cost, 74e75

Traditional
asset managers, 28
data, 222
statistical arbitrage trading, 52

Transaction cost analysis (TCA),
15e16, 18e19, 57, 65e67, 436,
469, 543

analytical tools, 543
cost vs. PnL, 67
Excel and Python functions, 549
functions, 545e547
library, 559e561

Kissell Research TCA library
functions, 566t

TCA functions, 565e567
transaction cost analysis using,

561e567
MATLAB functions, 549
measuring/forecasting, 66e67
optimization, 548
portfolio optimization with, 461e462,

463t
report examples, 550e558

Transaction costs, 57e58
analysts, 18

categorization, 65
chi-square goodness of fit, 93e94
classification, 62e63, 64f
comparing algorithms, 84e89

nonparametric tests, 85e86
paired samples, 86
sign test, 86e87
Wilcoxon signed rank test, 87e89

distribution analysis, 92
equations, 352e354

market impact, 353
market impact parameters, 353t
one-sided optimization problem, 354
price appreciation, 353
timing risk, 354

evaluating performance, 75e84
adaptation tactic, 83e84
benchmark price performance,

75e76
index-adjusted performance metric,

80e81
market cost-adjusted z-score, 83
pretrade benchmark, 80
PWP benchmark, 77e78
RPM, 78e80
trading price performance, 75
VWAP benchmark, 76e77
z-score evaluation metric, 81e83

experimental design, 95e96
balanced data sets, 96
data ties, 96
proper categorization, 96
proper statistical tests, 95
small sample size, 95

implementation shortfall, 67e74
formulation, 74e75

independent samples, 89e91
KolmogoroveSmirnov goodness of fit,

94e95
median test, 91e92
model, 547e549
posttrade analysis, 97
pyramid, 64f
unbundled transaction cost components,

59e62, 64t
commission, 59
delay cost, 60e61
fees, 59
market impact, 61e62
opportunity cost, 62
price appreciation, 61

rebates, 60
spreads, 60
taxes, 59
timing risk, 62

Transition management, 565
Transparency, 25
Transparent costs. See Visible costs
Treasury international capital data

(TIC data), 77
Triangular distribution, 148
True linear regression model, 156
Trust region reflective algorithm, 523
Turnover, 253
TWAP algorithm. See Time weighted

average price algorithm
(TWAP algorithm)

U
Unbundled transaction cost components,

59e62
Uniform distribution, 142
Unique covariance parameters, 285
Unsupervised learning, 224,

528e529

V
Value-at-risk (VaR), 269e270, 272
Variable(s), 351e352, 548

cost components, 65
relationships, 548e549

Variance, 270
of probability model, 182

Vendors, 405, 407e408, 418
current state of vendor market impact

models, 473e475
Visible costs, 65
Volatility, 112e113, 269, 271

forecasting stock, 274e280
historical, 269
implied, 269, 272e273

beta, 273
range, 273

measures, 270e272
average return, 270
correlation, 271
covariance, 271
dispersion, 271e272
log-returns, 270
VaR, 272
variance, 270

realized, 269
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Volume, 253
forecasting techniques, 301

ADV, 303e306
market impact model, 301e303
observations over 19-year period,

306e308
observations over 3-year period,

308e309
and stock price correlation, 309
variance, 379

Volume-weighted average price
(VWAP), 58, 246, 253, 550e551

algorithm, 32
benchmark, 76e77
frontier, 447
strategy, 389, 432e433, 440,

445, 477, 486

W
Wagner’s IS. See Expanded IS
“What-if” analysis, 473e474

Wilcoxon signed rank test, 87e89
WilcoxoneManneWhitney ranks test, 95
Working order of algorithm, 4, 31

Y
Yield curve strategy, 14

Z
Z-score

analysis, 251
evaluation metric, 81e83
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